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We discuss various attempts to implement mathematically the Dirac formulation of
Quantum Mechanics. A first attempt used Hilbert space. This formalization realizes
the Dirac formalism if and only if the spectra of the observables under consideration
is purely discrete. Therefore, generalized spectral decompositions are needed. These
spectral decompositions can be constructed in the framework of rigged Hilbert spaces.
We construct generalized spectral decompositions for self-adjoint operators using their
spectral measures. We review the previous work by Marlow (in Hilbert spaces), Antoine,
Roberts, and Melsheimer and complete it. We show that these generalized spectral
decompositions fit well in the framework of a theory constructed by Kato and Kuroda
and that all the results can be reproduced in this framework.
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1. INTRODUCTION

This paper is a revision of the mathematical foundations of the Dirac for-
mulation of Quantum Mechanics. On this subject, there has been written quite a
few contributions from several points of view: direct integrals of Hilbert spaces
(Marlow, 1965), rigged Hilbert spaces (Antoine, 1969, 1998; Bohm, 1967, 1994;
Melsheimer, 1974; Roberts, 1966a,b) and trajectory spaces (Eijndhoven and de
Graaf, 1986). This paper is a unified version of Hilbert space and rigged Hilbert
space mathematical implementation of the Dirac formulation. This implementa-
tion constructs suitable rigged rigged Hilbert spaces using spectral measures and
direct integrals of Hilbert spaces as main tools.

Mathematical Physicists are used to working on the von Neumann mathe-
matical formalism for Quantum Mechanics based in Hilbert space (von Neumann,
1955). However, it is well known that von Neumann mathematics do not fulfill a
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crucial requirement of Dirac: that any observaBléhad a complete set of eigen-
vectors, with real eigenvalues on the spectrumAofthe possible values of a
measurement of\) so that any pure state be a linear combination (finite or in-
finite) of these eigenvectors. Von Neumann approach is only good if the system
under study has purely discrete spectrunas it happens with atomic systems.
However, for systems allowing observables with continous spectrum, like those
involved in scattering processes, von Neumann theory does not justify the Dirac
formulation.

This is the main motivation for alternative mathematizations of the Dirac
formalism other than Hilbert spaces. There are, nevertheless, other arguments. For
instance, rigged Hilbert space formulations of Quantum Mechanics, allow for a
rigorous definition of vector states for resonances (Bohm, 1994; Bohm and Gadella,
1989) and for a conceptual development of irreversibility in Quantum Mechanics
(Antoniou and Prigogine, 1993; Antoniou, Tasaki, 1992, 1993) among other things.

The traditional theory of rigged Hilbert spaces uses a triplet H c ®*
for which H is a Hilbert spaceg is a locally convex topological vector space
dense i and®*, the antidual ofb. On the other hand, the Kato—Kuroda (Kato
and Kuroda, 1993) formalism shows that using a particular version of the spectral
representations, the densenes®a$ no longer necessary. In any case, we give a
procedure to obtain eigenfunction (with respect to any obsen/béxpansions
for vectors in the test space, that we shall always assume densénin the
formalism proposed by Kato and Kuroda, it is sufficient tdie a generator with
respect to the spectral measure. Although these ideas are not all new, we present
them into a unified context and we present few new results like the explicit form of
the measures and the generalized eigenvectors in terms of the spectral measures.

This paper is organized as follows: In Section 2, we make a brief review of
the concept of observable according to Dirac. In Section 3, we review the notion
of spectral measures and direct integrals of Hilbert spaces. In Section 4, we re-
view the main results of the Dirac formulation in rigged Hilbert spaces. In Section
5, we discuss the notion of spectral forms and spectral representations and their
properties. These constructions allow for new equipments of a spectral measure,
without the hypothesis of nuclearity. These new versions of the nuclear spectral
theorem present universal equipments, the minimal equipments represent the for-
malism in the Hilbert space (as Hilbert spaces are special forms of equipments)
and the Kato-Kuroda formalism is included as a special form of equipment. This
is presented in Section 6.

Theorems and Propositions are all together numbered in correlative order.

2. DIRAC KETS

To begin with, let us summarize the main features of the Dirac formulation
of Quantum Mechanics. These are (Dirac, 1958):
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—Each observablé& has a complete system of eigenkéts)} whose re-
spective eigenvalues cover the spectr() of A, which is the set of all
possible results of a measure of the observablee.,

ALY = AA).

—The completeness of the systéfh)} means that there exists a measure
ono (A) such that for each kep) and each brégp| we have the following
Parseval type identity:

(plo) =/ (pl1)(Al¢) duu(r)
o(A)

(We write (p|1) := (p|A)* where the star denotes complex conjugation.)
If we omit the arbitrary brdy| we have

0= P9 a0 M
—The observablé admits the following integral form
A:/ AAY (A dpe(X)
o(A)

that should be interpreted in the sense that for suitablgdetnd bragy|,
one has

(p|Alp) = /(A))»(QDIK)O»I@ du(2) @

—For each measurable Borel functiér) : o(A) — C the following oper-
ator can be defined

F(A) = f , TOm01au0) 3)

which should also be interpreted in the sense of (2). This formula is called
the Dirac functional calculus formula.

3. FORMALISMS ON HILBERT SPACES

In this section, we summarize the attempts for formalizing the Dirac kets in
the von Neumann formulation of Quantum Mechanics based in the concept of
Hilbert space.

3.1. Spectral Measures

J. von Neumann (von Neumann, 1955) identified the observabldth a
self-adjoint operatoon a separable Hilbert spaggand the spectrum oA as the
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Hilbert space spectrum(A) of the operatorA.
We denote by-(-) or by (, -) the inner product oft{.

—By the classical spectral theoreneach self adjoint operatoh in H is
associated to projection-valued measure or spectral measof¢he form
(o(A), 8, H, P). We have then

A= / »dP(Y),
o(A)

that should be interpreted in the sense that for suitable vetttrs= H (h
in the domain ofA) one has

(f, Ah) = /(A)Ad(f, P()h).

The same is valid for every measurable function of A in the functional
calculus derived.

—In the von Neumann formulation of Quantum Mechanics in Hilbert space
the above Dirac formulas only make sense if the spectrur isf purely
discrete (as it happens in the harmonic oscillator for example). In this case,
if o(A) = {A}andA fx = Acfcfork =1, 2,..., we have that, instead of
(1) and (2),

f= ;(f, fi) fi; Af = ;Ak(f, fie) fi @)

However, most self adjoint operators representing quantum observables
have a continuous spectrum for which (4) is not valid. TheretteeDirac
formalism cannot be implemented in the Hilbert spate

3.2. Direct Integrals of Hilbert Spaces

A possible way out was proposed by Marlow (1965) using direct integrals of
Hilbert spaces

Hon= | Hidu®).
o(A)

where,

—The elements of{, n are pu-measurable fields := {fA(A)}AEU(A) with
f(.) € H, such that . | f(\)12du(r) < cowhere] - ||, denote the norm
in H,. (The subindexXN denotes the functiohl (1) := dim’H,..)

—We recall that if {, -); denotes the inner product @i, the direct integral
H,,~ is a Hilbert space with the inner product

@ Py, = / (80,0, )



On the Mathematical Basis of the Dirac Formulation of Quantum Mechanics 2229

In addition, if {&(1)}, 27 N® is an orthonormal basis G{;, we have that

. N()
CRUZAES / Z:(9(/\) &) (&(), h()), du() — (5)

(A) k=

—By thefunctional spectral theoreraf von Neumann, for each self adjoint
operatorA in a Hilbert spacé+, there exists a Borel measyweona (A), a
direct integral of Hilbert spaceld,, n and a unitary operator :

V:H— H/I.,N

such that the operatf AV~ admits the following integral diagonal form
VAV = / Al dpe(r) (6)
a(A)

wherel; is the ideptity orH;.
Then, if f :=V~1f, h:=V~h, (5) and (6) give

(f, Ay = (f, VAV )y,

N

/ " D @), e)i(e), A dp(n)  (7)
k=1

Formula (7) is quite similar to (2), except that in (7) we have considered the

possibility of degeneracy of the If ¢(1) is a given measurable function on

o (A), we have the following functional calculus formula:

N@)

(f, p(A)h) = /(A)Z¢(A)(Q(k),&(k))x(@(K), hG)) du(h)  (8)
g k=1

where the operatap(A) is defined on a certain domaip, C H. Formula
(8) is sometimes written as:

NG

($(A) = / O ICLOCGILI ©)
o k=1

Compare (9) to (3) omitting the sumlin (9) for simplicity. Both formulas
are identical if we write

e(1)) = [2).

However, the Dirac requirement that each observable should have a com-
plete set of eigenvectors is not fulfilled. Afe o (A) is in the continuous spec-
trum of A, the Hilbert spacé, is not a subspace of the direct integtgl n =
f(, A) H; du(r), and therefore, we cannot find @, n an orthogonal basis of
elgenvectors oA (or rather ofV AV~1). From this point of view, the most we can
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do, is the following: IfP; : H,, n — H, denote the projection operatdr,e H is
in the domain of the observabkeandV f = fG(A) f (L) d(A) then, itis clear that

PV Af = Af (1),

so that every element &f; would be an eigenvector ok in some generalized
sense, a.e. ip(1). However, ifA is in the continuous spectrum &, then, P, is
not even continuous.

4. RIGGED HILBERT SPACES

The next attempt to implement the Dirac formulation of Quantum Mechanics
will look for these eigenvalues on certain extensions of the Hilbert space of states
‘H (Foias, 1959a,b, 1962; Gelfand and Vilenkin, 1964; Gelfand and Shilov, 1968;
Bohm, 1967; Roberts, 1966; Melsheimer 1974). These are cadjgdd Hilbert
spaces or Gelfand tripletand can be defined in four steps

— We start with a topological vector space (tv®) ), where® denotes a
complex vector space and, a locally convex topology o (Horvath,
1966; Jarchow, 1981; Schaeffer, 1997).

— Let us consider the spa@* of continuousantilinear mappings (func-
tionals) from @ into C. From now on, we shall denote the action of
F € ®* into ¢ € ® as(¢|F). This action is linear to the right and an-
tilinear to the left, just as the scalar product of Hilbert spaces. We shall
define(F|g) := (p|F)*.

— Let us consider the dual paib( ®*) and assume thab is a proper sub-
spacé of ®*. If ¢ € @, its action on each arbitragy € ®, as an element
of the antidual®*, is given by(¢|¢). This is a sesquilinear form od.

In addition, if this sesquilinear form igositive definitet endows® with
the norm||¢|| := /{¢]®). Its closure with respect to the topology given by
this norm is a Hilbert spac&. We shall denote the scalar product of two
vectorsy, ¢ € H as (@, ¢).

— In the case that the norip- || be one of the seminorms that define the
topologyze, then

® CHC P* (10)

Here, the mapping@ +— H is continuous. A structure like (10) is called
arigged Hilbert space or Gelfand tripletUsually, one demands that, in
addition, the canonical mappingbe nuclear. We are going to use this
requirement in this section only.

4This means tha® is algebraically isomorphic to a proper subspacebdf that we shall identify
with @.
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4.1. The Adjoint Operator

Let A: & — H be a continuous operator (with the topologies (+)). The
adjoint operatorA*, of A, A* : H — ®* is defined by the relation:

(A, f) = (p|A*f), VI eH,Vped,

The operatorA* is well defined and is weakly continous—and then strongly
continous.
Let £(®) be the space of continuous linear operatorsbon
Let A e L(®). A has a conjugatéd®, if there exists aA® € £L(®) such that
(o, Ap) = (A%, ¢), forall ¢, ¢ € ®.
The space of operators having a conjugate is denotetf@¥).
The operatoA € L¢(®) is real if A= AC.
For anyA e L¢(®), we may consider its adjoint

AP — O

which is weakly (and also strongly) continuous @ri. For any real operatof,
its adjoint A* extendsA because

(@IA 11 ) = (1Ag, 19) = (16, | A°p) = (9|1 *1 A®®), V9, ¢ € @,

wherel is the canonical injection @b into , i.e., | (¢) = ¢, forallp € ®. There-
fore, A*1*1 = | *1 A®. Analogously, we have tha®*| *1 = | *| A. Therefore,
A is an extension of\, which is weakly and strongly continuous.

4.2. Integral Decompositions

Let us denote byD; the tvs®* with the strong topology(d*, ®) (see for
instance Jarchow, 1981), with respect to the antidual dgif(*) and lety be an
arbitrary mapping inc(®, ®;).

y is self adjointif (¢p|y¢) = (¢|y¢)* for any pairg, ¢ € .
y is positiveif (¢p|y¢) > 0,V¢p € .
y isrealif (¢|y¢) € R, V¢ € .

An integral decompositionf @ is a triplet (A, u, (1)), with the following
properties:

i. The setA is a locally compact Hausdorf topological space and regular
positive measure on the Borelalgebral3 of A.

ii. y(2) € L(®, @) andy (A) is positive for almost alk with respect tqu.

iii. For eachg, ¢ € ® the functionh — (¢|y (1)) is u integrable and

6. 9) = f (Dly (W)e) du).

Let A € £Y(®).



2232 Gadella and @mez

A functionalp* € ®* is aneigenformof A with eigenvalue of. € C if

(ABle™) = (BIAp™) = Mle™), V¢ €,

This means that the extensioA®*, of A into ®* fulfills the relation A ¢* =
AQ*.
A positive operatoy € L£(P, ) is aneigenoperatoof A with eigenvalue if

Ay =y A=Lry.

If y is an eigenoperator &4, then it is straighforward thad*y = y A® = A*y.
Also, if y is an eigenoperator oA with eigenvaluer and if for a giveny € @
we have thaty¢ # 0 then the functionap™ = y¢ is an eigenform ofA with
eigenvalue..

Analogouslyp* = y¢ is also an eigenform of® with eigenvalue.*.

Being givenA e L¢(®), we say that 4, u, y (1)) is anA-integral decompo-
sition of @ if for eachA € A, the operatow (1) is either the zero operator or an
eigenoperator oA. This A-decomposition is real i\ C R.

A closed operatoA onH is formally normalif D(A) ¢ D(AT) and|| Ah|| =
| Afh|Ivh € D(A). The operatoA is subnormaif there exists a normal extension
A of Aon a Hilbert spacé{ that contains té+.

In his paper, Roberts (1966a,b) has obtained the following result:

Proposition 1. Let Ae £(®) and let® be a dense subspaceigfwith a locally
convex topology such that the canonical injectiond — 7 is continuous. Ifb
has an A-integral decomposition, then the closfref A is a subnormal operator
as well as formally normal ofi{.

The reciprocal of this result was also proven by Roberts (1966a,b), using the
following nuclear spectral theorem ofa@&fin and Maurin (@fdin, 1947; Maurin,
1968):

Theorem 2. LetH be aHilbertspace and g c H be alocally convex topolog-
ical vector space which is nuclear and denséinbeing the canonical injection
| : ® > 'H continuous. Let/, H; du(r) be a decomposition df as a direct
integral of Hilbert spaces. Then, there existsalmost everywhere on nuclear
mappings (1) : ® — H,, such that

(16, h) = / (106, RG), du(), ¢ < ®,he ™. (11)

Then, the reciprocal of the last proposition can be presented as follows:



On the Mathematical Basis of the Dirac Formulation of Quantum Mechanics 2233

Proposition 3. LetH and® be as in the previous theorem. LeteAL®(®) such
that the closure of | At on+ is subnormal and formally normal. Thed,admits
an A-integral decomposition with the following eigenoperators:

y() =1"M)10),

where the mappings(1) fulfill the relation (11) for each direct integral of Hilbert
spaces associated to any of the normal extensions lof means of the spectral
theorem. Moreover, the A-decompositiordois real if and only if A is real.

Two integral decompositiong\(, w1, y1(A)) and (A, w2, y2(1)) are equivalent
if the measureg; andu, are equivalent (belong to the same typg][= [w2])
and, save for a set of zero measure, we have that

du
7i() = 5 =),
Mni
Whereg—l’ﬁ is the Radon—Nikodym derivative of, with respect tqu;.

Proposition 4. A real operator Ac LE(®) has an A-decomposition unique save
for equivalence if and only if A is essentially self adjointX@nin this case, if P

is the spectral measure provided by the spectral representatidy tife closure
of A, and R, u, y) is an A-decomposition @b, we have that

6, P(E)p) = /E @ly (1)) du(r) = /E (1), 1 (1)) du(h), 6, ¢ € .

4.3. Representation of the Eigenoperators

If ® cH c ®* is a rigged Hilbert space for which the spa®eis nu-
clear and separable, O. Melsheimer (Melsheimer, 1974) has found a represen-
tation of the eigenoperators of ahe L°(®), essentially self adjoint oft, in
terms of the eigenforms of the adjoint Af A*. We present this representation as
follows: _

Let (R, B, H, P) be the spectral measure of the closéref A.

Foreacly € H, Hgy is the closed subspacehfspanned by the vectors of the
form P(E)g, with E € B. The orthogonal projectioRy of 7 on 4 commutes
with P(E) for all E € B.

Then, there exists a unique @lmost everywhere) real functiongj (1) € >
(i.e., a functional fromd ontoR) such that (Melsheimer, 1974)

(19, PaP(E)l 9) = /E (8165 ) (17 ()" duu(),
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for eachg, ¢ € ® andE € B. The expression that Melsheimer obtainsdgi(2)
is the following:
*()g()
a(2)
whereg is the image of by the isomorphisniy ~ L;‘;.
In general if{gn} is a complete sequence of generators{of.e.,H = &Hq,

then the sequendeyyn(1)} converges absolutelyi(a.e.) to ay (1) in the strong
topology onL(®, <I>;). Furthermorey (A)¢ admits the following representation:

Y =D (Plegn(M) dgn(A).

bg (M) = ) 12)

In Melsheimer (Melsheimer, 1974), the author cannot go further because the
explicit form of the mapping$ (1) and| *(1), in terms of the operatof or the
associated spectral measure, were unknown. In Melsheimer (Melsheimer, 1974),
the existence of these two mappings was derived from the nuclear spectral theorem.
The proof of this theorem is based on the nuclearity of the canonical injection |
| : & — H, which has arepresentation of the foh) = >, A« (-l¢, )h® where
the knowledge of the explicit form of the sequengbg}, {¢k}, and{ix} is not
necessary. We concrete these expressions below.

5. EIGENFUNCTION EXPANSIONS OF KATO-KURODA

Retjo (1967), Howland (1967, 1968, 1986), Kuroda (1967) and Kato (1970)
constructed a theory @igenfunction expansioms which, as in the Gelfand and
Foias theories, such eigenfunctions—the generalized eigenvectors—belong to the
antidual space* of an auxiliary tvsb. In this theory® need not be a dense subset
of H and the eigenfunction expansion is formulated in an abstract way analogous
to that given by Gelfand and Shilov (1968) and Gelfand and Vilenkin (1964).

5.1. Spectral Forms

By a spectral systenfA, A, ©, H, P) we mean a spectral measure space
(A, A, H, P) together with a -finite nonnegative scalar measwen (A, A).

By a standard procesB, is decomposed into the absolutely continuous part
Pa¢and the singular paif® with respect tq (Birman and Solomjak, 1987). The
basic elements of the Kato—Kuroda theory aresghectral formgor such systems:

Definition. Let (A, A, 1, H, P) be a spectral systenf spectral formfor this
system is a complex function on

5Here,{hy} is a bounded sequencet {¢x} an equicontinuous sequence in the antidbialand{i}
a sequence of complex numbers with|ix| < oo.
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A x ® x ® where® is a subspace df. andA C A belongs ta4, with the
following properties.

i. For eachg, ¢ € @, 1 > s(%; ¢, §) is u-integrable inA and its integral
oneachE C A, E € A, is equal to ¢, P¥%), i.e.,

(%PWEwriﬁax@¢mua) (13)

ii. Foreachs € A the functiony, ¢ — s(i; ¢, ¢) is a nonnegative Hermitian
form on® x ®. (We writes(i; ¢) for s(; ¢, ¢).)

The subspac® is usually called apectral subspacand the subsed a
spectral coreof the spectral system. The spectral from is denotedyyd, s).

Since (f,P2%(-)h) is a complex-valueg@-absolutely continuous measure for
eachf, h e H the Radon—Nikodym derivativel"T " = dg#(x) is defined for
u-a.e.x € 1 and by (13) we have

duth
du

The null set depending ofi andh, it is in general difficult to choossg(x; f, h) as

an Hermitian form irfH for eachh € A. But it can be done easily if f, h, aridare

suitably restricted. This is what the last definition is concerned with. (When the
spectral forms is that of (14) we refer to s as tlianonical spectral form

s(x; f, h) =

(), n-a.e. (14)

Example. Let’H = L?(R), A = R with the Lebesgue measude. and letP(E)
be the operator of multiplication by the characteristic functio& afefined on the
Borelo-algebraB of R. If @ is the set of all continuous functions ir?(R), then
s(h; o) = ¢*(A)p(1) defines a spectral form dd x @ x @, called the canonical
spectral form.

Definition 5. Let (A, A, u, H, P) be a spectral system with a spectral form
(A, ¢, s). A function

(0,60) x Rx dx & — C
(€, 2,0, 9) = Se(h o, ¢)’

is called anapproximate spectral forrfor (A, ®, s) if for eachg, ¢ € ® and
r € A, Sc(; ¢, ¢)is a Cauchy net when — 0 and its limit is equal to

(€0 > 0).

d
lim S.(h; 0, ¢) = —=22(2).
e—0 dM

Example. LetH = L?(R), u the Lebesgue measure, and®éE) be the multipli-
cation by the characteristic functigqe, E € B. If ze C\R, let R(2) := Jp_z—
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be the resolvefitof P in z. The following result for thd?oisson integrals well
known (Baumgttel and Wollenberg, 1983; prop. 3.16): For ahy H and for
anyA € R wheredu  (1)/dA exists, we have

d(f, P(»)f)

. € . .
@ :éllir});(R(kﬂe)f, R(A +i€)f)

Let us consider the spectral forfR(®, s), whered is the space of all continuous
functions ofL?(R) ands(x; ¢, ¢) = ¢*(1)¢(1) is the canonical spectral form. Then
an approximate spectral form fdR{ ®, s) is given by

re(; 9, ¢) i= (¢/7)(R(: +i€)p, R(A +i)ed). (15)

Finally, we assume that the spectral subspbdga topological vector space
(tvs) with its own topology. The following result is obvious.

Proposition6. Let(A, ®, s)be aspectral form and letan approximate spectral
form for it which is equicontinuous with respectte 0for eachi € A. Then the
spectral form €\, -, -) is continous in® x @ for eachi € A.

In the example considered above the approximate spectralfdimey, ¢) is
equicontinuous with respect to> 0 if the topology in® is defined byj|¢| ¢ :=
sup g l¢(2)] In this case we have

00 2
§|| R(L +i€)g? = 5/ O ST

T ) o (A —U)2 €2

5.2. Spectral Representations

Let (A, A, 1, H, P) be a spectral system with a spectral forf (b, s). For
eachh € A, s(i; -, -) defines a semi-inner productdn Let\; the set of altp with
s(x; @) = 0,s(x, @) :=s(A, ¢, ). Then, the quotient spade/ N is a pre-Hilbert
space with the inner product inducedsgy; -, -). We denote byb; its completion,
by (-, -), and|| - ||, the inner product and norm i@; and byg;, the quotient map
of ® onto ®/\; C P;.

Let us consider the product vector spabg= [],.; ®, consisting of all
vector fieldsp = {p(1)}, .z With p(1) € ®;, where we identify the elements equal
u-a.e.

SWe define

Jt(x) Z:];\ f(A)dP(R).
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By aquasi-simple functios we mean a function of the form (finite sum)

o(r) = Zak(?»)¢k, ax € L), ¢k € @.

Definition 7. Ap € d is said to bes-measurable functioifithere is a sequence
{¢k} of quasi-simple functions on such that

lim [$(2) — gugn() =0 for p-a.en e A.

_We denote byH, ¢ the set of alls-measurable elemengse & such that
||¢||§{N = [; l¢(A)2du(r) < co. ThusH,, « is a Hilbert space with the inner
product

B D)0 = /A @), B0, du() < oo.

Proposition 8. Quasi-simple functions af to ® are densely embeddedht),, o
in the following sense:

(a) For any quasi-simple functiop we have @ := {grp(%)} € Hy,o.
(b) For each¢ € H, o ande > 0, there is a quasi-simple functigh such
that g — @lly, . < €.

We denote byHq the smallest closed subspacetofcontaining® and re-
ducing P, i.e., PH¢ Note thatHe = H if @ is denseH is the closed span of
the set of all vectors of the fornfj{ a(r)dP(L)]¢ with @ € L*®(n) andg € .

HenceH% := P3H4 also reduce® andHy = Hif ® generated? (i.e
if He := H).

The following theorem is the main result of this section (Kato and Kuroda,
1970; theorem 1.11):

Theorem 9. There is a unitary operator V oK% into the direct integralH,, o
with the following properties:

1. V3(P)h=aVh={a()Vh()},; for eacha € L>(n) and he H?.
where J(P) := [; a(x)dP(}).
2.V PPY(A) = {09}, 4 for eachy € ®.

The relation between the operator V here and the operator V that appeared in
section 3.2 will be clarified in Theorem 19.

5.3. Eigenfunction Expansions

Let (A, A, 1, H, P) be a spectral system with a spectral form (b, s).
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Kato and Kuroda introduced the following conditions, which imply that the
system has a representation in a somewhat more refined sense:

E1) There existsa-finite measure spac€ (B, p), apartialisometryV of H
ontoL?(T", p) with intial set?¢, and a measurable function: ' — A
such that

[WLh](€) = a(w(@)WU(E), r-aefeT, (16)

for eachh € H anda € L*(A, r). (The measurability ofv means that
w~Y(E) € BwhenevelE e A. Thusa o w is p-measurable ol if « is
A-measurable on.)

E2) Thereis a complex-valued functighonT" x ® such that for each fixed
£ eTl, ¢ Y(;¢)is linear and for each fixed € @,

V(€ ¢) = [Wol(§), p-aefel. 7

E3) @ is a topological vector space apd— v (&; ¢) is continuous ord for
eacht e I'. Inthis case we write (§; ¢) = (¢|y*(£)) wherey ™ € &*.
Eachy * (&) will be called areigenfunctiorof P.

Example. LetH = L2(R®), W the Fourier—Plancherel transformatiorfefonto
H = LT, B, p) whereT is another copy ofR3, B the Borels-algebra onl",
and letp be the Lebesgue measute. If mapw of I" into A = AR is given by
w(E) = &% = él + §2 + £2is the Boreb-algebra ofA, u the Lebesgue measure
onA, P(E) = W-P(E)W, whereP(E) is the operator of multiplication by,,-:¢
(this is the characteristic function of the set(E), the function which is one on
the set and zero otherwise), add= L'(R%) N X with the L -topology, then
¥ *(&) € ®* is given by the function [2)~%2€¢* in the sense that

@) = @r) [ g6y e g e o (19

The spectral measure is the one associated with the selfadjoint operatarir

‘H and thep* (&) are the eigenfunctions of this operator in the usual sense. In this
case, a spectral form is

sin('2|x — yI)

X =y dp(X)e*(y)dxdy,  (19)

g d) = (@)t [

wherex € A andg, ¢ € .

6. LOCALLY CONVEX EQUIPMENTS OF A SPECTRAL MEASURE

Inthe formalisms we have described above the fundamental formulas satisfied
for the complete systems of generalized eigenvectors are very similar:
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For the direct integrals of Hilbert spaces we have

b dimH;,

(f, Paph)n = / Y (F0), ()6 (1), h(1))s dus(n),
a j=1

wheref, g € H and @, b] is an arbitray interval oR

For the rigged Hilbert spaces, the mappings) : ® — H, of the nuclear
spectral theorem, from which we determine the form of the eigenoperators and
eigenforms, satisfy

(14, P(E)h) = /E (10, R, du(r).

foreveryp € &, h € HandE C A, E € A. (Here we consider a spectral measure
(A, A, H, P) associated to the direct integral.)
Finally, in the Kato—Kuroda theory, the spectral forms s satisfy

(0, P(E)D) = /E st ¢, ) du(h),

for eachg, ¢ € ® ande C A, E € A.

Other common feature of the formulations requiring an auxiliar topological
vector spaced C A is the restriction of the action of the eigenvectors to this
subspace and to a subset of the domain

These facts motivate the following definition of the equipments of a spectral
measure:

Definition 10. The topological vector space®(t4) equip the spectral measure
(A, A, H, P) if and only if the following conditions hold:

i. There exists a one-to-one linear mapping® — H with range (image
in H of ® by |) a dense space iH. If we identify eachyp € ® with its
image,l (¢) in H, we can assume thdt C H is a dense subspace Hf
and| the canonical injection frond into H.

ii. (Firstversion). There existsafinite measurg.on (A, A),asetAg C A
with zerou measure and a family of vectorsdmn* of the form

{IAk™) € @™ : A € A\Ag, k € [1, m)}, (20)

wherem € {0, 1, 2,...}, such that

6 PENI = [ (0 GlA) i), V¢ € & VE € 4
k=1
(21)
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In particular, ifE = A, then,P(E) = |4, the identity or+ and

(@ @)= | D _(PIK ) @A) du(r), Vo, ¢ € @.

A k=1

iii. (Second version) There existgafinite measure onX, A),asetAg C A
with zerou measure and a mapping:

(A\Ao) x [1, m) — &~
A xk — Ak, (22)
such that for eaclp € @, the complex functioni¢|Ak*) belongs to
L2(A x [1, m), u x d), whered is the discreet measure ¢h m), i.e.,

/AZ|<¢|ka>|Zdu(x) < o0, V€O,

k=1

and relations (21) hold.

Each family of the form (20) or (22) satisfying (21) is calleccamplete
system of Dirac ket&lso called generalized eigenvalues) of the spectral measure
(A, A, H, P) on the rigging ©®, t4) and will be denoted by®, 7, u, Ak™).

Formula (21) determines the complete system of Dirac kets of the spectral
measure uniquely except for:

i. Theu-zero measure sety.
ii. The order of the vectorg.1*), |A2%), ..., [AN(X)*).
iii. Afaze factor for eachak™). If |Ak*) is a complete system of Dirac kets,
then also is€??W|xk*), ¢ being a measurable function from x N
into R.

We may assume without loss of generality tha} = [u].

6.1. The Action of Eigenvectors

Let (A, A, H, P) be a spectral measure space. In the following we assume
that the conditions of Birman—Solomjak are satisfied, i.e., every Hilbert space is
separable and every measure space has a numerable basis. These conditions don't
suppose any restriction on applications to Quantum Mechanics.

By H4 we denote the closure of the space

{(f eH: f=P(E)g,
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for any Borel setE in o (A). We say that the sequence of vect(g§}’j“=1, m =
1,2,...,00in H is agenerating systemof H if

m
H=EPHq
j=1

If f,9e X, uig(E):=(f, P(E)g) whenE € o(A) is a complex measure
ono(A). If f =g, we write u; := u¢ and thereforeu;(E) = (f, P(E)f).
The support ofug is A(g), so that,A(g) C o(A). The type of the measurg:
ono(A) is the equivalence class of all measures that are equivalentmatid
is denoted by 4] (two measures, on the same measurable sgace and v
are equivalent ifx is absolutely continuous with respectit@and vice versa). If
the measure: is absolutely continuous with respect to the measunge write
[v] > [ul]-

A nonzero vectog € H is of maximal typewith respect to the spectral mea-
sureP if for each f € H, [ug] > [1] and g is a maximal vector. Such maximal
vectors always exist. The typg{] of a maximal vector is called trgpectral type
of P and denoted byH].

Now, let us consider a direct integral of Hilbert spaces associated to the
spectral measure space:

Houn = / Ho du()
A

and letV : H — H, n the unitary operator of the functional spectral theorem of
von Neumann (1955). Birman and Solomjak (1987) determine the explicit form
of V in terms of a particular generating system of the spectral measure and an
orthonormal measurable basis of the direct integral:

Proposition 11. There exists a generating systég};., in H, with respect to
P, such that:

L [P =[] > [g] > -~

ii. If {ej(2)}]L, is a measurable orthonormal basis @1, n, then, for all
h € H, n, we have that:

v-1h — o 9 on) apor)a 3
J_G]j(fm<e.() %””)A ())gJ (29)

Theorem 12. Under the conditions of Proposition 1, for eachhfe H we
have

(. PEN =" fE (VIR & (e (), VR, dur)  (24)
j=1
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Theorem 13. Under the same conditions as in Theorem 12, for eaeh# and
k € |1, m) (see section 2 for a definition ¢f, m) we have the following identities:

dl/vgk h

d
2 (y—Leh

(@), Vho: = [ -

(1)

_ dl’Lgl diigeh
= Gt (25)

d'u‘gk

- [

().

Example. Let us consider the position operator bf(R, dx) defined as usual by
Q:Dg — LR, dx)
f — x.f(x)

with domain
Dq = {f € LA(R, dx) :f IXf(x)[2dx < oo}.
R
The operatoR is self adjoint on this domain with spectral measure given by

P(E)f = xe- f, Vf e LR, dx),VE € B.

whereB is the class of Borel sets in the real line. The spectral measugeisf
given by

(R, B, L3(R, dx), P)

For, any f € L2(R, dx) which is a.e. different from zero almost elsewhere with
respect to the Lebesgue measureRois a generating vector. The direct integral
given by the von Neumann theorem

Houn = / Hy du(x)
R

is equal toL?(R, dx). Therefore N(1) = 1, Hx = C anddu(x) = dx. The mea-
surable orthonormal basiéx) in our case are measurable functiefs) : R — C
such that

le(x) =1

almost everywhere with respect to the Lebesgue measure. The unitary mspping
is given by

V71 LR, dx) - L3R, dx)
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sy | A
Vh— (/Re (x) —dug xX)Vh(x)d P(x)) g
d
(&0, Vhoo) = [ = “g() “g“() (26)

The measures on (26) are given by

Thus,

tgn(E) = (g, P(E)h) =/Eg*(X)h(X)dX, VE € B,

1eo(E) = (g, P(E)g) = /E g'()g(x)dx, VE € B.

From these identities, we easily obtain the Radon—Nikodym derivatives of the
measuresin g andug With respect to the Lebesgue measureRoiThese Radon—
Nikodym derivatives are:

dﬂgh(x) g*()h(x) and ° (X) = g7 ()g(x). (27)

As the generating vecta@(x) is a.e. different from zero, we can divide the
first identity in (27) by the second to obtain

dig, ix) = h(x)

dug )

If we replace (28) in (26), we conclude that the action of the measurable
orthonormal basis on eaét is proportional to the action of the Dirac debt):

(28)

(e(x), Fh() = “g( )ﬁ, jae. (29)
In particular, ifu = ug, we have
e _ 1
a0 — g0 e

almost elsewhere with respectto

6.2. Minimal Riggings

We can define the following partial order in the class of the riggings of a
spectral measure:
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Definition 14. Let (®, 14) and , ty) be two riggings of the spectral measure
(A, A, H, P), we say that ¢, t¢) is finer than @, ty) and we write @, ) >
(¥, ty), if ® C W andte > ty. In particular, ifr¢ and ty are finer than the
topology induced byt in ® andW, respectively, we have:

PCVCHCU* CP”.

This is a partial ordering in the class of riggings of, (4, H, P).

The next result shows the existence of minimal riggings.

Theorem 15. Let (A, A, H, P) be a spectral measure. Each direct integral of
the form’H,, n associated to4, A, H, P), by the von Neumann theorem, along
with one of its measurable orthonormal ba@(k)}ﬂﬁ), or equivalently, each

generating systerfo ., in H with respect to P such that

a. [Pl =[aip > [Glp > -+,
b. if1 <] <k=<m,thenug|ag) = Ky

provide a rigging(®, 7, u, Ak*). This rigging is characterized by the following
properties:

(i) The subspace is dense irf{ and is given by
d/’% Ok
¢ € H . existe—= q e———=(1) < 00,YA € A\Ag, Yk € [1, N(A)) ¢ ,
Mg

whereAq is a subset ofA with i zero measure (or equivalently, P zero
measure).

(i) The complete family of antilinear functionals @n fulfilling (21), is of
the form

{IAk*) 1 & € A\Ao, k € [1, N(L)},
where we define ea¢hk*) in terms of the isomorphism V in Theorem 13:
d
@) = (VO0), 8, = |4 *0) (j“” % (1), V¢ € D. (30)
Mg

(i) 7o is the weak topology (@, ®*), i.e., the coarsest compatible with the
dual pair(®, ®*). The topological dua®* is the vector space spanned
by the setik*.

The topologyte is produced by the following family of seminorms:

¢ = HPIAk™)|, & € A\Ao, k € [1, N(3)).
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Then, the riggind®, 7, «, A*) is minimal. This means that no topology @n
coarser thanr (except for the indeterminacy that produces the choice of the zero
1 measure sed ) can rig the spectral measure\( A, H, P).

The proof of Theorem 15s based on the following idea: If we a priori
know the antilinear functionalg.k*) on @, these vectors define the seminorms
¢ — [{p|Ak*)]. Then|rk*) € ®* if and only if the topology ond makes these
seminorms continuous. In other words, the topologybomust be either equal to
T or stronger in order thatk*) € ®*.

6.3. Explicit Form of the Eigenoperators

The following result permits the identification of the Foias operat¢t3and
I <(2):
Theorem 16. Let(A, A, H, P), {91, Hun, (&M, V, & and [1k*) be
as in Theorem 15. Then, the mappings:

(L) ® — H,

¢ Z<¢|ka>*eK(x)

3

= (&), Vo()e(r)

k=1

e ) G e ) @31)
Moy

I
Mg

~
1

1

are well definedw almost everywhere on. The following relation holds:

(P(E)I ¢, h) = /E(I AM¢, Vh(R),du(r), ¢ e d,he H, E € A. (32)
In particular if E = A,
(¢, h) = /A(l ()¢, Vh(),dr(h), ¢ € d, h e H. (33)
The adjoint operator (1) is
1X(A) : Hy — B
hy > 1*(\)h, : @ —> C
¢ = h(1(M)e),



2246 Gadella and @mez

where

h, (1 (1)) = (Zwmwm(w, m)
k=

1 H,,

k=1

_ (Z &), V(1)) m)
Hs

= (Z Lo, “gk 1)), m)

In particular if h, = ej(A), then I*(A)ej(r) = [Aj*)
[*(2) : Hy — @~

() = 1*(g () : & — C

@ = (p|A]™).
The eigenoperatorg(r) = | *(1)1 (1) of the spectral measure are of the form

H.

y() =11 : d —
o>y d—C
¢ = [y(M)ol(e)

where

[y (1)¢1(9) = (Z pIAk*)ex(n), Z(golka)eK(k))
H

k=1 k=1

m
=) (BIAK*) (@l AK*).
k=1
The eigenforms of the spectral measgre = y(1)¢p € &, where¢ € © are
given by:
¢ :®—-C
m
@ > Y (BIAK)* (plak™),

k=1

In particular, if we choose such that i € Hg,, then,
" (@) = (PIA] ) (@lA] ), ¥y € D.
Once we have identified the eigenoperators and the eigenforms, the topologies

on @ for which there exist an integral decomposition of the spectral measure can
be explicity determined:
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Theorem 17. With the hypothesis of Theorem 16, we have that:

i. A sufficient condition for the mapping$2) in (31) be continuous with
respect to a topology defined ond is that forA € A (save for a set with
zerop measure) the family of antilinear formjplk™) : k =1, 2,...} be
equicontinuous with respect to

ii. Ifm = p-sup N(A) = P-sup N>() is finite, then the mappingq\) are
continuous for the minimal topology, as defined in Theorem 13.

The continuity of the eigenoperators and eigenforms can be derived from the
continuity of the mapping (1) and the following proposition:

Proposition 18. Under the conditions of Theorem 16, if we enddvwith a
locally convex topology for which(1) is continuous and let, the antidual space
with the strong topologg(®*, ®). Then,

i. The mapping I(}) : H; — ®* is weakly and strongly continuous, i.e.,
itis (c(H, H), o(®*, ®)) and|| - ||x,, B(P*, P) continuous.
ii. The eigenoperatop(r) = I *(A)I(}) : & — &> belongs tol(P, cp;).

6.4. Kato-Kuroda Riggings

In the next result we establish the connections between the spectral repre-
sentations of Kato—Kurodahgorem 9 and the concretion of Birman—Solomjak
(proposition 1).

Theorem 19. Let(A, A, H, P) be a spectral measure and lg};._, be a gen-
erating systenti{,  a direct integral associated to,Re;(1)}{_, an orthonormal
measurable basis and the operator.V{ — 7, N as in section 3.2. (We suppose
thatu is ao -finite nonnegative scalar measure an, (4) of the same type as [P].)

On the other hand, let us consider the spectral systamA, u, H, P), a
spectral form @, ®, s) for it, the direct integraft,, ¢, and an operator V: H —
H,..o» as in theorem 9.

Then, if{g}", C @, for eachh € H andx € A we have

Ut ) 3400 ) ) (34)

Vhi(2) = @
[ ]( ) j=1 d“/ d,ug,

and

dng,h
dug

[V'hI(2) = &L, (*) 4.9;. (35)
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We note two consequencestbhEorem 19

(i) Inthe concretion of Kato—Kuroda (formula (35)) the normalization fac-
tors d”gl (1) don't appear, or better, they are includedyjig;. This is
the relevant advantage of that construction.

(i) Under the conditions of the theorem, The isomorphisfig ! and
VFV-1 pbetween the direct integrals,, » y H, n relate the measur-

able families
{90.9j}ier Y {,/ Mgl(k)ej(/\)} :
eA

wherej € [1, m).

Now, we consider the eigenfunction expansions of Kato—Kuroda. We are
going to see that under the Birman—Solomjak conditions in section 3.2 itis possible
to obtain explicitly a complete system of eigenfunctions at the same time than the
eigenvectors of Marlow (1965) and the eigenoperators of Foias (1959a,b, 1962).

An orthonormal measurable basges} of the direct integral

]
H,u,N = / H)L dM
A

induces a unitary isomorphism between the spaces
Hun = L2 (Ao, ;1% @ [ @5 L%(Am, 1; CM)],
where the setd are
Ac={r€e A:N®R)=Kk}, ke[l o0).

On the other hand, if we consider the discrete meagumeN and [1,m), where
m € N, we have the following unitary isomorphisms:

L2(Aco, 1% ~ L%(Aso x N, u x d)
and
L2(Am, ; C™ =~ L%(Am, x[1, m), u x d).
Finally, in the union

(A x M) [U(Am x [1, m>>}

m=1

we define the measureas the sum of the measures< d that we consider above
in each of them.
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Theorem 20. Let the spectral systenA, A, 1, H, P), the spectral form
(A, @, s) for it, the generating systefmi ., for P, the direct integralH,, i
the orthonormal measurable badis;j(1)}{,, and the operator V H — H,, i
be asin section 3.2. L€t be a minimal rigging (see section 6.2), whére= A\ Ag
and{gk}y., C ®. Thenin the space

L? ((Aw x N[ [G(Z\m x [1, m>)].v>,
m=1

whereAg = As A for all s € {oo} UN, we have a complete system of eigen-
functions of the form

¥ x K)o = (&(2), V(M)

- %(X)—d”“g“"’ ). (36)
u

dug,

(These identities are verified for eveye @ and every(,K) e (Aso X
N UIUp1(Am x [, m)).

On the other hand, whe® = span{g; : j < [1, m)}, only the normalization
factors are relevant: In this case, eaghe @ is of the form (finite sump =
> cjgj, where g € C, and then

[V x K)]¢ = o ddL;k(,\), »e A ke[l m. (37)

We can use the approximate spectral forms as a tool to construct locally
convex riggings of a spectral measure. Under the conditioi$ebrem 20we
know that the generalized eigenvectors of the spectral me&sare of the form

d d
(Blak) = [ =28 G) 05 ),
dﬂ dﬂgk

for all ¢ € ®, A € A andk € [1, N(A)). In this case, we can write the spectral
form in the following terms

m

(ki ¢, 9) = D (pIAk*) (1K |g),

k=1

for eachp, ¢ € ® andi € A. In particular, ifg = gy, then

d'ugk

. (A)(PIAk™).

5()\,(15, gk) =
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Now, if s is an approximate spectral form fok (@, s), we have

dug,
du

lim s.(+: ¢, G0 = (A)(@IAK"). (38)
Finally, we consider o a topology of locally convex topological vector spaces
for which the approximate spectral fosnis equicontinuous with respecté¢dor
eachi € A. Then the generalized eigenvectaks® belong tod*.

Definition 21. We say that a locally convex riggin@( 7o) of a spectral measure
space {\, A, H, P) is aKato—Kuroda riggingf there is an approximate spectral
form s. equicontinuous with respect tofor eachi € A\ Ag. (Here Ay is the set
considered in the definition of the rigging).

6.5. Inductive and Nuclear Versions of the Spectral Theorem

To finish our presentation, we give two new versions of both the nuclear and
the inductive spectral theorems. In these versions, this kind of spaces, nuclear
and inductive limit, appear as universal riggings of Vitali spectral measures, i.e.,
these spaces equip any Vitali spectral measure. This happens in particular for the
absolutely continuous part, with respect to the Lebesgue measure, and the discrete
part of every normal operator.

6.5.1. Vitali spectral measures

The spectral measure given by, (A4, H, P) is a Vitali spectral measure
if being given its continuous partA( A, Hc, Pc), there exists a measune
on A with [u] = [P], such that the measure spack, (4, 1) admits a Vitali
system.

If (A, A, H, P) is a Vitali spectral measure, the Vitali Lebesgue theorem
guarantees that @, h € Hc, for almost all.. € A the Radon—Nikodym derivative

%‘Th;(k) exists and is equal to lign, o ’;"gj(EE)) for any sequence of s&, admitting
a contraction to..

Example. Every spectral measure defined &% () without continuous singular
part with respect to the Lebesgue measure is a Vitali spectral measure.

6.5.2. The inductive version of the spectral theorem

The inductive limit ¢, 1,)™<N) of a countable system whet, are separa-
ble Hilbert spaces (wher¥,, ¢ H) such that the identity mappindgs : H — H
are Hilbert—Schmidt is a universal rigging.
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Theorem 22. LetH be a separable Hilbert space and
(Hm In)(nEN)
an inductive system for which eath, is a separable Hilbert space and the identity
mappings | : H — H are Hilbert-Schmidt for all ne N. If
@ = sparf |_] R(In)}
(neN)
is dense irf{ and1 is the inductive topology produced by the systety, |,,)™<™
on @, then,(®, ) rigs any Vitali spectral measur@\, A, H, P). In particular,
(@, 1) rigs the absolutely continuous and discrete parts of any spectral measure
of the form(C, B, H, P).

6.5.3. Nuclear version of the spectral theorem

The original version of the Gelfand—Maurin nuclear spectral theorem
(Gelfand and Vilenkin, 1964; Maurin, 1968) assumed thas endowed with a
nuclear topology, the canonical injectibn ® — 7 is continuous, and therefore
nuclear, andA reducesb(A® c @) and is continuous ofb.

The present version of the nuclear spectral theorem uses the relation between
the spectral measures and the direct integral of Hilbert spaces.

To begin with, let us write the following Lemma, due to Roberts (1966a,b):

Lemma. Let ® be a locally convex topological vector space andTebe a
nuclear operatol : ® — H, where’H is a Hilbert space. Then, there exists a
separable Banach spakeand two operator$; : ® — X andT, : X — H such
thatT; is continuous]> is nuclear, and = T, o Ty.

Our version of the nuclear spectral theorem is the following:

Theorem 23. LetH be a Hilbert space® a dense subspace H, andty a
nuclear topology o such that the canonical injection:1® +— 7 is continuous.
Then(®, t4) rigs any Vitali spectral measufe\, A, H, P). In particular, (®, t4)

rigs the absolutely continuous and discrete parts of any spectral measure of the
form(C, B, H, P).

7. CONCLUDING REMARKS

As concluding remarks, we present two tables that summarize the present
work. They are labeled as Table | and Table IlI. In Table I, we summarize the state
of the art of the subject before the present research. On the other hand, Table II
shows how the new framework of locally convex equipments of spectral measures
as here introduced unifies the formalisms in Table I.
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Table I. Dirac Kets

On Hilbert spaces

“In the conventional von Neumann—Mackey formulation,
a quantum system is described in the language of Hilbert spdce

Projection-valued measuré&son
Hilbert space$+.

Spectral measure spaces
(A, A, H, P).

Only with discrete spectrum.

Eigenvectorsn H.
Classical spectral theorem.
Wave packets.

Direct integral decompositions of
Hilbert spaces

Hun = [ Hadp(h).

On auxiliary topological vector spaces

Continuous and discrete spectrum.
Eigenvectorsn H;..
Functional spectral theorem.
Onlyif & € op, H; € H and
P, : H — H,; is continuous.

... One would like to go beyond Hilbert space in order to be able to incorporate very singular
objects. But at the same time, one wants to keep the good geometrical structure of Hilbert space,
and the spectral theory as well, that fits so neatly with the interpretation of quantum mechanics.
The answer is to consider a structure built around a Hilbert space, in the spirit of distribution

theory.” Antoine [1998].

Gelfand triplets.

Rigged Hilbert spaces.
dCHCP.

Integral decompositions of Foias.

Mainly when® is a nuclear tvs.
Eigenoperatorsn L(®, ®5).
Eigenformsn &*.

Nuclear spectral theorem.

Eigenfunction expansions of
Kato—Kuroda on Auxiliary pairs
(@, ©X).

Eigenfunctionsn &*.
Spectral representations on Direct
integrals from®.

Other Formalisms> (See Antoine
(1998).)

Scales of Hilbert or Banach spaces,
Lattices of Hilbert or Banach
spaces, Partial inner product
spaces.
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Table Il. Locally Convex Equipments

A Unified Formalism

Spectral Measure Spaces
(A, A H, P).

Direct integral decompositions of
Hilbert spaces

H[L,N = flie Hy, dpe(r).

Minimal equipments

e Tight riggings: They adjust their
structure to a concrete spectral
measure or direct integral.

o The topology of® is o (P, )
and®* is generated by the
eigenvectors.

« Identification of eigenvectors.

Gelfand triplets.
Rigged Hilbert spaces.
b CHCP*.

Integral Decompositions of Foias.

Universal equipments

e These riggings equip every
Vitali spectral measure.
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o New versions of the nuclear
and inductive spectral
theorem.

o Identification of the
eigenoperators and the
eigenforms.

Eigenfuction expansions of Equipments of Kato—Kuroda
Ka_to—KuroSa on Auxiliary e o Stationary methods and
pairs @, ©). approximate spectral forms.

o [dentification of
eigenfunctions.
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