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We discuss various attempts to implement mathematically the Dirac formulation of
Quantum Mechanics. A first attempt used Hilbert space. This formalization realizes
the Dirac formalism if and only if the spectra of the observables under consideration
is purely discrete. Therefore, generalized spectral decompositions are needed. These
spectral decompositions can be constructed in the framework of rigged Hilbert spaces.
We construct generalized spectral decompositions for self-adjoint operators using their
spectral measures. We review the previous work by Marlow (in Hilbert spaces), Antoine,
Roberts, and Melsheimer and complete it. We show that these generalized spectral
decompositions fit well in the framework of a theory constructed by Kato and Kuroda
and that all the results can be reproduced in this framework.
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1. INTRODUCTION

This paper is a revision of the mathematical foundations of the Dirac for-
mulation of Quantum Mechanics. On this subject, there has been written quite a
few contributions from several points of view: direct integrals of Hilbert spaces
(Marlow, 1965), rigged Hilbert spaces (Antoine, 1969, 1998; Bohm, 1967, 1994;
Melsheimer, 1974; Roberts, 1966a,b) and trajectory spaces (Eijndhoven and de
Graaf, 1986). This paper is a unified version of Hilbert space and rigged Hilbert
space mathematical implementation of the Dirac formulation. This implementa-
tion constructs suitable rigged rigged Hilbert spaces using spectral measures and
direct integrals of Hilbert spaces as main tools.

Mathematical Physicists are used to working on the von Neumann mathe-
matical formalism for Quantum Mechanics based in Hilbert space (von Neumann,
1955). However, it is well known that von Neumann mathematics do not fulfill a
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crucial requirement of Dirac: that any observableA had a complete set of eigen-
vectors, with real eigenvalues on the spectrum ofA (the possible values of a
measurement ofA) so that any pure state be a linear combination (finite or in-
finite) of these eigenvectors. Von Neumann approach is only good if the system
under study has apurely discrete spectrum, as it happens with atomic systems.
However, for systems allowing observables with continous spectrum, like those
involved in scattering processes, von Neumann theory does not justify the Dirac
formulation.

This is the main motivation for alternative mathematizations of the Dirac
formalism other than Hilbert spaces. There are, nevertheless, other arguments. For
instance, rigged Hilbert space formulations of Quantum Mechanics, allow for a
rigorous definition of vector states for resonances (Bohm, 1994; Bohm and Gadella,
1989) and for a conceptual development of irreversibility in Quantum Mechanics
(Antoniou and Prigogine, 1993; Antoniou, Tasaki, 1992, 1993) among other things.

The traditional theory of rigged Hilbert spaces uses a triplet8 ⊂ H ⊂ 8×
for whichH is a Hilbert space,8 is a locally convex topological vector space
dense inH and8×, the antidual of8. On the other hand, the Kato–Kuroda (Kato
and Kuroda, 1993) formalism shows that using a particular version of the spectral
representations, the denseness of8 is no longer necessary. In any case, we give a
procedure to obtain eigenfunction (with respect to any observableA) expansions
for vectors in the test space8, that we shall always assume dense inH. In the
formalism proposed by Kato and Kuroda, it is sufficient that8 be a generator with
respect to the spectral measure. Although these ideas are not all new, we present
them into a unified context and we present few new results like the explicit form of
the measures and the generalized eigenvectors in terms of the spectral measures.

This paper is organized as follows: In Section 2, we make a brief review of
the concept of observable according to Dirac. In Section 3, we review the notion
of spectral measures and direct integrals of Hilbert spaces. In Section 4, we re-
view the main results of the Dirac formulation in rigged Hilbert spaces. In Section
5, we discuss the notion of spectral forms and spectral representations and their
properties. These constructions allow for new equipments of a spectral measure,
without the hypothesis of nuclearity. These new versions of the nuclear spectral
theorem present universal equipments, the minimal equipments represent the for-
malism in the Hilbert space (as Hilbert spaces are special forms of equipments)
and the Kato-Kuroda formalism is included as a special form of equipment. This
is presented in Section 6.

Theorems and Propositions are all together numbered in correlative order.

2. DIRAC KETS

To begin with, let us summarize the main features of the Dirac formulation
of Quantum Mechanics. These are (Dirac, 1958):
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–Each observableA has a complete system of eigenkets{|λ〉} whose re-
spective eigenvalues cover the spectrumσ (A) of A, which is the set of all
possible results of a measure of the observableA, i.e.,

A|λ〉 = λ|λ〉.
–The completeness of the system{|λ〉} means that there exists a measureµ

onσ (A) such that for each ket|φ〉 and each bra〈ϕ| we have the following
Parseval type identity:

〈ϕ|φ〉 =
∫
σ (A)
〈ϕ|λ〉〈λ|φ〉 dµ(λ)

(We write〈ϕ|λ〉 := 〈ϕ|λ〉∗ where the star denotes complex conjugation.)
If we omit the arbitrary bra〈ϕ| we have

|φ〉 =
∫
σ (A)
|λ〉〈λ|φ〉 dµ(λ) (1)

–The observableA admits the following integral form

A =
∫
σ (A)

λ|λ〉〈λ| dµ(λ)

that should be interpreted in the sense that for suitable kets|φ〉 and bras〈ϕ|,
one has

〈ϕ|A|φ〉 =
∫
σ (A)

λ〈ϕ|λ〉〈λ|φ〉 dµ(λ) (2)

–For each measurable Borel functionf (λ) : σ (A) 7→ C the following oper-
ator can be defined

f (A) =
∫
σ (A)

f (λ)|λ〉〈λ| dµ(λ) (3)

which should also be interpreted in the sense of (2). This formula is called
the Dirac functional calculus formula.

3. FORMALISMS ON HILBERT SPACES

In this section, we summarize the attempts for formalizing the Dirac kets in
the von Neumann formulation of Quantum Mechanics based in the concept of
Hilbert space.

3.1. Spectral Measures

J. von Neumann (von Neumann, 1955) identified the observableA with a
self-adjoint operatoron a separable Hilbert spaceH and the spectrum ofA as the
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Hilbert space spectrumσ (A) of the operatorA.
We denote by (·, ·)H or by (·, ·) the inner product onH.

–By the classical spectral theorem, each self adjoint operatorA in H is
associated to aprojection-valued measure or spectral measureof the form
(σ (A), β,H, P). We have then

A =
∫
σ (A)

λ d P(λ),

that should be interpreted in the sense that for suitable vectorsf, h, ∈ H (h
in the domain ofA) one has

( f, Ah) =
∫
σ (A)

λ d( f, P(λ)h).

The same is valid for every measurable function of A in the functional
calculus derived.

–In the von Neumann formulation of Quantum Mechanics in Hilbert space
the above Dirac formulas only make sense if the spectrum ofA is purely
discrete (as it happens in the harmonic oscillator for example). In this case,
if σ (A) = {λk} andAk fk = λk fk for k = 1, 2,. . . , we have that, instead of
(1) and (2),

f =
∑

k

( f, fk) fk; A f =
∑

k

λk( f, fk) fk (4)

However, most self adjoint operators representing quantum observables
have a continuous spectrum for which (4) is not valid. Therefore,the Dirac
formalism cannot be implemented in the Hilbert spaceH.

3.2. Direct Integrals of Hilbert Spaces

A possible way out was proposed by Marlow (1965) using direct integrals of
Hilbert spaces

Hµ,N =
∫
σ (A)
Hλ dµ(λ).

where,

–The elements ofHµ,N are µ-measurable fieldŝf := { f̂ (λ)}λ∈σ (A) with
f̂ (λ) ∈ Hλ such that

∫
σ (a) ‖ f̂ (λ)‖2λdµ(λ) < ∞where‖ · ‖λ denote the norm

inHλ. (The subindexN denotes the functionN(λ) := dimHλ.)
–We recall that if (·, ·)λ denotes the inner product onHλ the direct integral
Hµ,N is a Hilbert space with the inner product

(ĝ, ĥ)Hµ,N =
∫
σ (A)

(ĝ(λ), ĥ(λ))λ dµ(λ)
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In addition, if{ek(λ)}N(λ)
k=1 is an orthonormal basis ofHλ, we have that

(ĝ, ĥ)Hµ,N =
∫
σ (A)

N(λ)∑
k=1

(ĝ(λ), ek(λ))λ(ek(λ), ĥ(λ))λ dµ(λ) (5)

–By thefunctional spectral theoremof von Neumann, for each self adjoint
operatorA in a Hilbert spaceH, there exists a Borel measureµ onσ (A), a
direct integral of Hilbert spacesHµ,N and a unitary operatorV :

V : H 7→ Hµ,N

such that the operatorV AV−1 admits the following integral diagonal form

V AV−1 =
∫
σ (A)

λIλ dµ(λ) (6)

whereIλ is the identity onHλ.
Then, if f := V−1 f̂ , h := V−1ĥ, (5) and (6) give

( f, Ah)H = ( f̂ , V AV−1ĥ)Hµ,N

=
∫
σ (A)

N(λ)∑
k=1

λ(ĝ(λ), ek(λ))λ(ek(λ), ĥ(λ))λ dµ(λ) (7)

Formula (7) is quite similar to (2), except that in (7) we have considered the
possibility of degeneracy of theλ. If φ(λ) is a given measurable function on
σ (A), we have the following functional calculus formula:

( f, φ(A)h) =
∫
σ (A)

N(λ)∑
k=1

φ(λ)(ĝ(λ), ek(λ))λ(ek(λ), ĥ(λ))λ dµ(λ) (8)

where the operatorφ(A) is defined on a certain domainDφ ⊂ H. Formula
(8) is sometimes written as:

(φ(A)) =
∫
σ (A)

N(λ)∑
k=1

φ(λ)|ek(λ))(ek(λ)| dµ(λ) (9)

Compare (9) to (3) omitting the sum ink in (9) for simplicity. Both formulas
are identical if we write

|e(λ)) = |λ〉.
However, the Dirac requirement that each observable should have a com-

plete set of eigenvectors is not fulfilled. Ifλ ∈ σ (A) is in the continuous spec-
trum of A, the Hilbert spaceHλ is not a subspace of the direct integralHµ,N =∫
σ (A)Hλ dµ(λ), and therefore, we cannot find onHµ,N an orthogonal basis of

eigenvectors ofA (or rather ofV AV−1). From this point of view, the most we can
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do, is the following: IfPλ : Hµ,N → Hλ denote the projection operator,f ∈ H is
in the domain of the observableA andV f = ∫

σ (A) f (λ) dµ(λ) then, it is clear that

PλV A f = λ f (λ),

so that every element ofHλ would be an eigenvector ofA in some generalized
sense, a.e. inµ(λ). However, ifλ is in the continuous spectrum ofA, then,Pλ is
not even continuous.

4. RIGGED HILBERT SPACES

The next attempt to implement the Dirac formulation of Quantum Mechanics
will look for these eigenvalues on certain extensions of the Hilbert space of states
H (Foias, 1959a,b, 1962; Gelfand and Vilenkin, 1964; Gelfand and Shilov, 1968;
Bohm, 1967; Roberts, 1966; Melsheimer 1974). These are calledrigged Hilbert
spaces or Gelfand tripletsand can be defined in four steps

– We start with a topological vector space (tvs) (8, τ8), where8 denotes a
complex vector space andτ8 a locally convex topology on8 (Horváth,
1966; Jarchow, 1981; Schaeffer, 1997).

– Let us consider the space8× of continuousantilinear mappings (func-
tionals) from8 into C. From now on, we shall denote the action of
F ∈ 8× into φ ∈ 8 as 〈φ|F〉. This action is linear to the right and an-
tilinear to the left, just as the scalar product of Hilbert spaces. We shall
define〈F |ϕ〉 := 〈ϕ|F〉∗.

– Let us consider the dual pair (8,8×) and assume that8 is a proper sub-
space4 of 8×. If ϕ ∈ 8, its action on each arbitraryφ ∈ 8, as an element
of the antidual8×, is given by〈φ|ϕ〉. This is a sesquilinear form on8.
In addition, if this sesquilinear form ispositive definiteit endows8 with
the norm‖φ‖ := √〈φ|φ〉. Its closure with respect to the topology given by
this norm is a Hilbert spaceH. We shall denote the scalar product of two
vectorsϕ, φ ∈ H as (ϕ, φ).

– In the case that the norm‖ · ‖ be one of the seminorms that define the
topologyτ8, then

8 ⊂ H ⊂ 8× (10)

Here, the mapping8 7→ H is continuous. A structure like (10) is called
a rigged Hilbert space or Gelfand triplet. Usually, one demands that, in
addition, the canonical mappingI be nuclear. We are going to use this
requirement in this section only.

4 This means that8 is algebraically isomorphic to a proper subspace of8× that we shall identify
with 8.
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4.1. The Adjoint Operator

Let A :8 7→ H be a continuous operator (with the topologies (τφ , τH)). The
adjoint operator,A×, of A, A× : H→ 8× is defined by the relation:

(Aφ, f ) = 〈φ|A× f 〉, ∀ f ∈ H, ∀φ ∈ 8,

The operatorA× is well defined and is weakly continous—and then strongly
continous.

LetL(8) be the space of continuous linear operators on8.
Let A ∈ L(8). A has a conjugateAc, if there exists aAc ∈ L(8) such that
(ϕ, Aφ) = (Acϕ, φ), for all ϕ, φ ∈ 8.
The space of operators having a conjugate is denoted byLc(8).
The operatorA ∈ Lc(8) is real if A = Ac.
For anyA ∈ Lc(8), we may consider its adjoint

A× : 8× → 8×

which is weakly (and also strongly) continuous on8×. For any real operatorA,
its adjointA× extendsA because

〈φ|A× I × I ϕ〉 = (I Aφ, I ϕ) = (I φ, I Acϕ) = 〈φ|I × I Acϕ〉, ∀φ, ϕ ∈ 8,

whereI is the canonical injection of8 intoH, i.e., I (ϕ) = ϕ, for allϕ ∈ 8. There-
fore, A× I × I = I × I Ac. Analogously, we have thatAc× I × I = I × I A. Therefore,
Ac× is an extension ofA, which is weakly and strongly continuous.

4.2. Integral Decompositions

Let us denote by8×β the tvs8× with the strong topologyβ(8×,8) (see for
instance Jarchow, 1981), with respect to the antidual pair (8,8×) and letγ be an
arbitrary mapping inL(8,8×β ).
γ is self adjointif 〈ϕ|γφ〉 = 〈φ|γ ϕ〉∗ for any pairφ, ϕ ∈ 8.
γ is positiveif 〈φ|γφ〉 > 0,∀φ ∈ 8.
γ is real if 〈φ|γφ〉 ∈ R, ∀φ ∈ 8.

An integral decompositionof 8 is a triplet (3, µ, γ (λ)), with the following
properties:
i. The set3 is a locally compact Hausdorf topological space andµ a regular
positive measure on the Borelσ -algebraB of 3.
ii. γ (λ) ∈ L(8,8×β ) andγ (A) is positive for almost allλ with respect toµ.
iii. For eachϕ, φ ∈ 8 the functionλ 7→ 〈φ|γ (λ)ϕ〉 isµ integrable and

(φ, ϕ) =
∫
3

〈φ|γ (λ)ϕ〉 dµ(λ).

Let A ∈ Lc(8).
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A functionalϕ× ∈ 8× is aneigenformof A with eigenvalue ofλ ∈ C if

〈Acφ|ϕ×〉 = 〈φ|Ac×ϕ×〉 = λ〈φ|ϕ×〉, ∀φ ∈ 8,

This means that the extension,Ac×, of A into 8× fulfills the relationAc×ϕ× =
λϕ×.
A positive operatorγ ∈ L(8,8×) is aneigenoperatorof A with eigenvalueλ if

Ac×γ = γ A = λγ.
If γ is an eigenoperator ofA, then it is straighforward thatA×γ = γ Ac = λ∗γ .
Also, if γ is an eigenoperator ofA with eigenvalueλ and if for a givenϕ ∈ 8
we have thatγ ϕ 6= 0 then the functionalϕ× = γ ϕ is an eigenform ofA with
eigenvalueλ.
Analogously,ϕ× = γ ϕ is also an eigenform ofAc with eigenvalueλ∗.

Being givenA ∈ Lc(8), we say that (3, µ, γ (λ)) is anA-integral decompo-
sition of 8 if for eachλ ∈ 3, the operatorγ (λ) is either the zero operator or an
eigenoperator ofA. This A-decomposition is real if3 ⊆ R.

A closed operatorA onH is formally normalif D(A) ⊂ D(A†) and‖Ah‖ =
‖A†h‖∀h ∈ D(A). The operatorA is subnormalif there exists a normal extension
Ã of A on a Hilbert spacẽH that contains toH.

In his paper, Roberts (1966a,b) has obtained the following result:

Proposition 1. Let A∈ L(8) and let8 be a dense subspace ofH with a locally
convex topology such that the canonical injection I: 8→ H is continuous. If8
has an A-integral decomposition, then the closureĀ of A is a subnormal operator
as well as formally normal onH.

The reciprocal of this result was also proven by Roberts (1966a,b), using the
following nuclear spectral theorem of G˚ardin and Maurin (G˚ardin, 1947; Maurin,
1968):

Theorem 2. LetH be a Hilbert space and let8 ⊂ H be a locally convex topolog-
ical vector space which is nuclear and dense inH, being the canonical injection
I : 8 7→ H continuous. Let

∫
3
Hλ dµ(λ) be a decomposition ofH as a direct

integral of Hilbert spaces. Then, there existsµ-almost everywhere on3 nuclear
mappings I(λ) : 8 7→ Hλ, such that

(I φ, h) =
∫
3

(I (λ)φ, ĥ(λ))λ dµ(λ), φ ∈ 8, h ∈ H. (11)

Then, the reciprocal of the last proposition can be presented as follows:
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Proposition 3. LetH and8 be as in the previous theorem. Let A∈ Lc(8) such
that the closure of I AI−1 onH is subnormal and formally normal. Then,8 admits
an A-integral decomposition with the following eigenoperators:

γ (λ) = I ×(λ)I (λ),

where the mappings I(λ) fulfill the relation (11) for each direct integral of Hilbert
spaces associated to any of the normal extensions ofĀ by means of the spectral
theorem. Moreover, the A-decomposition of8 is real if and only if A is real.

Two integral decompositions (3, µ1, γ1(λ)) and (3, µ2, γ2(λ)) are equivalent
if the measuresµ1 andµ2 are equivalent (belong to the same type [µ1] = [µ2])
and, save for a set of zero measure, we have that

γ1(λ) = dµ2

dµ1
(λ)γ2(λ),

wheredµ2

dµ1
is the Radon–Nikodym derivative ofµ2 with respect toµ1.

Proposition 4. A real operator A∈ Lc(8) has an A-decomposition unique save
for equivalence if and only if A is essentially self adjoint onH. In this case, if P
is the spectral measure provided by the spectral representation ofĀ, the closure
of A, and (R, µ, γ ) is an A-decomposition of8, we have that

(φ, P(E)ϕ) =
∫

E
〈φ|γ (λ)ϕ〉 dµ(λ) =

∫
E
(I (λ)φ, I (λ)ϕ)λ dµ(λ), φ, ϕ ∈ 8.

4.3. Representation of the Eigenoperators

If 8 ⊂ H ⊂ 8× is a rigged Hilbert space for which the space8 is nu-
clear and separable, O. Melsheimer (Melsheimer, 1974) has found a represen-
tation of the eigenoperators of anA ∈ Lc(8), essentially self adjoint onH, in
terms of the eigenforms of the adjoint ofA, A×. We present this representation as
follows:

Let (R, B,H, P) be the spectral measure of the closureĀ of A.
For eachg ∈ H,Hg is the closed subspace ofH spanned by the vectors of the

form P(E)g, with E ∈ B. The orthogonal projectionPg of H onHg commutes
with P(E) for all E ∈ B.

Then, there exists a unique (µalmost everywhere) real functionalφ×g (λ) ∈ 8×
(i.e., a functional from8 ontoR) such that (Melsheimer, 1974)

(Iφ , Pg P(E)I ϕ) =
∫

E
〈φ|φ×g (λ)〉〈ϕ|φ×g (λ)〉∗ dµ(λ),
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for eachφ, ϕ ∈ 8 andE ∈ B. The expression that Melsheimer obtains forφ×g (λ)
is the following:

φ×g (λ) = I ×(λ)ĝ(λ)

ĝ(λ)
, (12)

whereg̃ is the image ofg by the isomorphismHg ∼ L2
µ.

In general if{gn} is a complete sequence of generators ofH, i.e.,H = ⊕Hgn

then the sequence{γgn(λ)} converges absolutely (µ a.e.) to aγ (λ) in the strong
topology onL(8,8×β ). Furthermore,γ (λ)φ admits the following representation:

γ (λ)φ =
∑

n

〈φ|φ×gn(λ)〉∗φ×gn(λ).

In Melsheimer (Melsheimer, 1974), the author cannot go further because the
explicit form of the mappingsI (λ) and I ×(λ), in terms of the operatorA or the
associated spectral measure, were unknown. In Melsheimer (Melsheimer, 1974),
the existence of these two mappings was derived from the nuclear spectral theorem.
The proof of this theorem is based on the nuclearity of the canonical injection I
I : 8 7→ H, which has a representation of the formI (·) =∑k λk〈·|ϕ×k 〉hk

5 where
the knowledge of the explicit form of the sequences{hk}, {ϕk}, and{λk} is not
necessary. We concrete these expressions below.

5. EIGENFUNCTION EXPANSIONS OF KATO–KURODA

Retjo (1967), Howland (1967, 1968, 1986), Kuroda (1967) and Kato (1970)
constructed a theory ofeigenfunction expansionsin which, as in the Gelfand and
Foias theories, such eigenfunctions—the generalized eigenvectors—belong to the
antidual space8× of an auxiliary tvs8. In this theory,8 need not be a dense subset
ofH and the eigenfunction expansion is formulated in an abstract way analogous
to that given by Gelfand and Shilov (1968) and Gelfand and Vilenkin (1964).

5.1. Spectral Forms

By a spectral system(3,A, µ,H, P) we mean a spectral measure space
(3,A,H, P) together with aσ -finite nonnegative scalar measureµ on (3,A).

By a standard process,P is decomposed into the absolutely continuous part
Pac and the singular partPs with respect toµ (Birman and Solomjak, 1987). The
basic elements of the Kato–Kuroda theory are thespectral formsfor such systems:

Definition. Let (3,A, µ,H, P) be a spectral system.A spectral formfor this
system is a complex function on

5 Here,{hk} is a bounded sequence inH, {ϕk} an equicontinuous sequence in the antidual8× and{λk}
a sequence of complex numbers with

∑ |λk| < ∞.
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3̂×8×8 where8 is a subspace ofH and3̂ ⊆ 3 belongs toA, with the
following properties.

i. For eachφ, ϕ ∈ 8, λ 7→ s(λ;ϕ, φ) is µ-integrable in3̂ and its integral
on eachE ⊆ 3̂, E ∈ A, is equal to (ϕ, Pacφ), i.e.,

(ϕ, Pac(E)φ) =
∫

E
s(λ;ϕ, φ) dµ(λ) (13)

ii. For eachλ ∈ 3̂ the functionϕ, φ 7→ s(λ;ϕ, φ) is a nonnegative Hermitian
form on8×8. (We writes(λ;φ) for s(λ;φ, φ).)

The subspace8 is usually called aspectral subspaceand the subset̂3 a
spectral coreof the spectral system. The spectral from is denoted by (3̂,8, s).

Since (f,Pac(·)h) is a complex-valuedµ-absolutely continuous measure for
each f, h ∈ H the Radon–Nikodym derivatived( f, P(λ)h)

dµ = dµ f,h

dµ (λ) is defined for
µ-a.e.λ ∈ λ and by (13) we have

s(λ; f, h) = dµ f,h

dµ
(λ), µ-a.e. (14)

The null set depending onf andh, it is in general difficult to chooses(λ; f, h) as
an Hermitian form inH for eachλ ∈ 3. But it can be done easily if f, h, andλ are
suitably restricted. This is what the last definition is concerned with. (When the
spectral formss is that of (14) we refer to s as thecanonical spectral form.)

Example. LetH = L2(R),3 = R with the Lebesgue measuredλ and letP(E)
be the operator of multiplication by the characteristic function ofE defined on the
Borelσ -algebraB of R. If 8 is the set of all continuous functions inL2(R), then
s(λ;ϕφ) = ϕ∗(λ)φ(λ) defines a spectral form onR×8×8, called the canonical
spectral form.

Definition 5. Let (3,A, µ,H, P) be a spectral system with a spectral form
(3̂, φ, s). A function

(0, ε0)× R×8×8→ C
(ε, λ, ϕ, φ) 7→ Sε(λ;ϕ, φ)

, (ε0 > 0).

is called anapproximate spectral formfor (3̂,8, s) if for eachϕ, φ ∈ 8 and
λ ∈ 3̂, Sε(λ;ϕ, φ) is a Cauchy net whenε → 0 and its limit is equal to

lim
ε→0
Sε(λ;ϕ, φ) = dµϕ,φ

dµ
(λ).

Example. LetH = L2(R), µ the Lebesgue measure, and letP(E) be the multipli-
cation by the characteristic functionχE, E ∈ B. If z ∈ C\R, let R(z) := J(λ−z)−1
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be the resolvent6 of P in z. The following result for thePoisson integralis well
known (Baumg¨artel and Wollenberg, 1983; prop. 3.16): For anyf ∈ H and for
anyλ ∈ R wheredµ f (λ)/dλ exists, we have

d( f, P(λ) f )

dλ
= lim

ε→0

ε

π
(R(λ+ i ε) f, R(λ+ i ε) f )

= lim
ε→0

ε

π

∫
1

(λ− x)2+ ε2
dµ f (x).

Let us consider the spectral form (R,8, s), where8 is the space of all continuous
functions ofL2(R) ands(λ;ϕ, φ) = ϕ∗(λ)φ(λ) is the canonical spectral form. Then
an approximate spectral form for (R,8, s) is given by

rε(λ;ϕ, φ) := (ε/π )(R(λ+ i ε)ϕ, R(λ+ i )εφ). (15)

Finally, we assume that the spectral subspace8 is a topological vector space
(tvs) with its own topology. The following result is obvious.

Proposition 6. Let (3̂,8, s) be a spectral form and let sε an approximate spectral
form for it which is equicontinuous with respect toε > 0 for eachλ ∈ 3̂. Then the
spectral form s(λ, ·, ·) is continous in8×8 for eachλ ∈ 3̂.

In the example considered above the approximate spectral formτε(λ;ϕ, φ) is
equicontinuous with respect toε > 0 if the topology in8 is defined by‖φ‖8 :=
supλ∈R |φ(λ)| In this case we have

ε

π
‖R(λ+ i ε)φ‖2 = ε

π

∫ ∞
−∞

|φ(u)|2
(λ− u)2+ ε2

du≤ ‖φ‖28.

5.2. Spectral Representations

Let (3,A, µ,H, P) be a spectral system with a spectral form (3̂,8, s). For
eachλ ∈ 3̂, s(λ; ·, ·) defines a semi-inner product in8. LetNλ the set of allφ with
s(λ;φ) = 0, s(λ, φ) := s(λ, φ, φ). Then, the quotient space8/Nλ is a pre-Hilbert
space with the inner product induced bys(λ; ·, ·). We denote bỹ8λ its completion,
by (·, ·)λ and‖ · ‖λ the inner product and norm iñ8λ and byqλ the quotient map
of 8 onto8/Nλ ⊂ 8̃λ.

Let us consider the product vector space8̃λ =
∏
λ∈3̂ 8̃λ consisting of all

vector fieldsφ̃ = {φ̃(λ)}λ∈3̂ with φ̃(λ) ∈ 8̃λ, where we identify the elements equal
µ-a.e.

6 We define

Jf (x) :=
∫
3

f (λ) d P(λ).
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By aquasi-simple functioñφ we mean a function of the form (finite sum)

φ̃(λ) =
∑

αk(λ)φk, αk ∈ L∞(µ), φk ∈ 8.

Definition 7. Aφ̃ ∈ 8̃ is said to bes-measurable functionif there is a sequence
{φ̃k} of quasi-simple functions on̂3 such that

lim
n→∞‖φ̃(λ)− qλφn(λ)‖λ = 0 for µ-a.e.λ ∈ 3̂.

We denote byHµ,8 the set of alls-measurable elements̃φ ∈ 8̃ such that
‖φ̃‖2Hµ,8

= ∫
3̂
‖φ̃(λ)2

λ dµ(λ) < ∞. ThusHµ,8 is a Hilbert space with the inner
product

(ϕ̃, φ̃)Hµ,8 :=
∫
3̂

(ϕ̃(λ), φ̃(λ))λ dµ(λ) < ∞.

Proposition 8. Quasi-simple functions on̂3 to8 are densely embedded inHµ,8

in the following sense:

(a) For any quasi-simple functioñφ we have q̃φ := {qλφ̃(λ)} ∈ Hµ,8.
(b) For eachφ̃ ∈ Hµ,8 and ε > 0, there is a quasi-simple functioñϕ such

that‖qϕ̃ − φ‖Hµ,8 < ε.

We denote byH8 the smallest closed subspace ofH containing8 and re-
ducing P, i.e., PH8 Note thatH8 = H if 8 is dense.H8 is the closed span of
the set of all vectors of the form [

∫
3̂
α(λ) d P(λ)]φ with α ∈ L∞(µ) andφ ∈ 8.

HenceHac
8 := PacH8 also reducesP andHac

8 := Hac if 8 generatesH (i.e
if H8 := H).

The following theorem is the main result of this section (Kato and Kuroda,
1970; theorem 1.11):

Theorem 9. There is a unitary operator V onHac
8 into the direct integralHµ,8

with the following properties:
1. V Jα(P)h = αV h= {α(λ)V h(λ)}λ∈3̂ for eachα ∈ L∞(µ) and h∈ Hac.

where Jα(P) := ∫
3̂
α(λ) d P(λ).

2. V Pac(3̂) = {qλφ}λ∈3̂ for eachφ ∈ 8.

The relation between the operator V here and the operator V that appeared in
section 3.2 will be clarified in Theorem 19.

5.3. Eigenfunction Expansions

Let (3,A, µ,H, P) be a spectral system with a spectral form (3̂,8, s).
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Kato and Kuroda introduced the following conditions, which imply that the
system has a representation in a somewhat more refined sense:

E1) There exists aσ -finite measure space (0, B, ρ), a partial isometryW ofH
ontoL2(0, ρ) with intial setHac, and a measurable functionw : 0→ 3

such that

[W Jαh](ξ ) = α(w(ξ ))[Wu](ξ ), ρ-a.e.ξ ∈ 0, (16)

for eachh ∈ H andα ∈ L∞(3, µ). (The measurability ofw means that
w−1(E) ∈ B wheneverE ∈ A. Thusα ◦ w is ρ-measurable on0 if α is
A-measurable on3.)

E2) There is a complex-valued functionψ on0 ×8 such that for each fixed
ξ ∈ 0, φ 7→ ψ(ξ ;φ) is linear and for each fixedφ ∈ 8,

ψ(ξ ;φ) = [Wφ](ξ ), ρ-a.e.ξ ∈ 0. (17)

E3) 8 is a topological vector space andφ 7→ ψ(ξ ;φ) is continuous on8 for
eachξ ∈ 0. In this case we writeψ(ξ ;φ) = 〈φ|ψ×(ξ )〉whereψ× ∈ 8×.
Eachψ×(ξ ) will be called aneigenfunctionof P.

Example. LetH = L2(R3), W the Fourier–Plancherel transformation ofH onto
Ĥ = L2(0, B, ρ) where0 is another copy ofR3, B the Borelσ -algebra on0,
and letρ be the Lebesgue measuredξ . If mapw of 0 into 3̂ = 3R+ is given by
w(ξ ) = |ξ |2 = ξ2

1 + ξ2
2 + ξ2

3 is the Borelσ -algebra of3, µ the Lebesgue measure
on3, P(E) = W−1P̂(E)W, whereP̂(E) is the operator of multiplication byχω−1E

(this is the characteristic function of the setw−1(E), the function which is one on
the set and zero otherwise), and8 = L1(R3) ∩H with the L1-topology, then
ψ×(ξ ) ∈ 8× is given by the function (2π )−3/2ei ξ ·λ in the sense that

〈φ|ψ×(ξ )〉 = (2π )−3/2
∫
R3
φ(λ)∗ ei ξ ·λ, dλ, φ ∈ 8 (18)

The spectral measureP is the one associated with the selfadjoint operator—1 in
H and theφ×(ξ ) are the eigenfunctions of this operator in the usual sense. In this
case, a spectral form is

s(λ;ϕ, φ) = (4π2)−1
∫
R3×R3

sin(λ1/2|x − y|)
|x − y| φ(x)ϕ∗(y) dx dy, (19)

whereλ ∈ 3̂ andϕ, φ ∈ 8.

6. LOCALLY CONVEX EQUIPMENTS OF A SPECTRAL MEASURE

In the formalisms we have described above the fundamental formulas satisfied
for the complete systems of generalized eigenvectors are very similar:
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For the direct integrals of Hilbert spaces we have

( f, P(a,b]h)H =
∫ b

a

dimHλ∑
j=1

( f (λ), ej (λ))λ(ej (λ), h(λ))λ dµ(λ),

where f, g ∈ H and (a, b] is an arbitray interval ofR
For the rigged Hilbert spaces, the mappingsI (λ) : 8 7→ Hλ of the nuclear

spectral theorem, from which we determine the form of the eigenoperators and
eigenforms, satisfy

(I φ, P(E)h) =
∫

E
(I (λ)φ, ĥ(λ))λ dµ(λ),

for everyφ ∈ 8, h ∈ H andE ⊂ 3, E ∈ A. (Here we consider a spectral measure
(3,A,H, P) associated to the direct integral.)

Finally, in the Kato–Kuroda theory, the spectral forms s satisfy

(ϕ, Pac(E)φ) =
∫

E
s(λ;ϕ, φ) dµ(λ),

for eachφ, ϕ ∈ 8 ande⊂ 31, E ∈ A.
Other common feature of the formulations requiring an auxiliar topological

vector space8 ⊂ 3 is the restriction of the action of the eigenvectors to this
subspaceφ and to a subset of the domain3.

These facts motivate the following definition of the equipments of a spectral
measure:

Definition 10. The topological vector spaces (8, τ8) equip the spectral measure
(3,A,H, P) if and only if the following conditions hold:

i. There exists a one-to-one linear mappingI : 8 7→ H with range (image
in H of 8 by I ) a dense space inH. If we identify eachφ ∈ 8 with its
image,I (φ) in H, we can assume that8 ⊂ H is a dense subspace ofH
and I the canonical injection from8 intoH.

ii. (First version). There exists aσ -finite measureµ on (3,A), a set30 ⊂ 3
with zeroµ measure and a family of vectors in8× of the form

{|λk×〉 ∈ 8× : λ ∈ 3\30, k ∈ [1, m〉}, (20)

wherem ∈ {∞, 1, 2,. . .}, such that

(φ, P(E)ϕ)H =
∫

E

m∑
k=1

〈φ|λk×〉〈ϕ|λk×〉∗ dµ(λ), ∀φ, ϕ ∈ 8, ∀E ∈ A.
(21)
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In particular, ifE = 3, then,P(E) = IH, the identity onH and

(φ, ϕ)H =
∫
3

m∑
k=1

〈φ|λk×〉〈ϕ|λk×〉∗ dµ(λ), ∀φ, ϕ ∈ 8.

iii. (Second version) There exists aσ -finite measure on (3,A), a set30 ⊂ 3
with zeroµ measure and a mapping:

(3\30)× [1, m〉 → 8×

λ× k 7→ |λk×〉, (22)

such that for eachφ ∈ 8, the complex function〈φ|λk×〉 belongs to
L2(3× [1, m〉, µ× d), whered is the discreet measure on|1, m〉, i.e.,∫

3

m∑
k=1

|〈φ|λk×〉|2 dµ(λ) < ∞, ∀φ ∈ 8,

and relations (21) hold.

Each family of the form (20) or (22) satisfying (21) is called acomplete
system of Dirac kets(also called generalized eigenvalues) of the spectral measure
(3,A,H, P) on the rigging (8, τ8) and will be denoted by (8, τ, µ, λk×).

Formula (21) determines the complete system of Dirac kets of the spectral
measure uniquely except for:

i. Theµ-zero measure set30.
ii. The order of the vectors|λ1×〉, |λ2×〉, . . . , |λN(λ)×〉.

iii. A faze factor for each|λk×〉. If |λk×〉 is a complete system of Dirac kets,
then also iseiφ(λk)|λk×〉, φ being a measurable function from3× N
intoR.

We may assume without loss of generality that [P] = [µ].

6.1. The Action of Eigenvectors

Let (3,A,H, P) be a spectral measure space. In the following we assume
that the conditions of Birman–Solomjak are satisfied, i.e., every Hilbert space is
separable and every measure space has a numerable basis. These conditions don’t
suppose any restriction on applications to Quantum Mechanics.

ByHg we denote the closure of the space

{ f ∈ H : f = P(E)g},



P1: GXB

International Journal of Theoretical Physics [ijtp] PP994-ijtp-473598 November 12, 2003 0:20 Style file version May 30th, 2002

On the Mathematical Basis of the Dirac Formulation of Quantum Mechanics 2241

for any Borel setE in σ (A). We say that the sequence of vectors{gj }mj=1, m=
1, 2,. . . ,∞ inH is agenerating systemofH if

H =
m⊕

j=1

Hgj .

If f, g ∈ H, µ f,g(E) := ( f, P(E)g) when E ∈ σ (A) is a complex measure
on σ (A). If f = g, we writeµ f := µ f, f and therefore,µ f (E) = ( f, P(E) f ).
The support ofµg is 3(g), so that,3(g) ⊂ σ (A). The type of the measureµ
on σ (A) is the equivalence class of all measures that are equivalent withµ and
is denoted by [µ] (two measures, on the same measurable spaceÄ, µ and ν
are equivalent ifµ is absolutely continuous with respect toν and vice versa). If
the measureµ is absolutely continuous with respect to the measureν, we write
[ν] Â [µ].

A nonzero vectorg ∈ H is of maximal typewith respect to the spectral mea-
sureP if for each f ∈ H, [µg] Â [µ f ] and g is a maximal vector. Such maximal
vectors always exist. The type [µg] of a maximal vector is called thespectral type
of P and denoted by [P].

Now, let us consider a direct integral of Hilbert spaces associated to the
spectral measure space:

Hµ,N =
∫
3

Hλ dµ(λ)

and letV : H 7→ Hµ,N the unitary operator of the functional spectral theorem of
von Neumann (1955). Birman and Solomjak (1987) determine the explicit form
of V in terms of a particular generating system of the spectral measure and an
orthonormal measurable basis of the direct integral:

Proposition 11. There exists a generating system{gk}mk=1 in H, with respect to
P, such that:

i. [ P] = [g1] Â [g2] Â · · ·.
ii. If {ej (λ)}mj=1 is a measurable orthonormal basis onHµ,N, then, for all

h ∈ Hµ,N, we have that:

V−1h =
m⊕

j=1

(∫
σ (A)

(
ej (λ),

√
dµ

dµg1

(λ)h(λ)

)
λ

d P(λ)

)
gj (23)

Theorem 12. Under the conditions of Proposition 1, for each f, h ∈ H we
have

( f, P(E)h) =
m∑

j=1

∫
E
(V f (λ), ej (λ))λ(ej (λ), V h(λ))λ dµ(λ) (24)
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Theorem 13. Under the same conditions as in Theorem 12, for each h∈ H and
k ∈ |1, m〉 (see section 2 for a definition of|1, m〉 we have the following identities:

(ek(λ), V h(λ))λ =
√

dµ

dµg1

(λ)
dµgk,h

dµ
(λ)

=
√

dµg1

dµ
(λ)

dµgk,h

dµg1

(λ) (25)

=
√

dµgk

dµ
(λ)

dµgk,h

dµgk

(λ).

Example. Let us consider the position operator onL2(R, dx) defined as usual by

Q : DQ → L2(R, dx)

f 7→ x. f (x)

with domain

DQ =
{

f ∈ L2(R, dx) :
∫
R
|x f (x)|2 dx < ∞

}
.

The operatorQ is self adjoint on this domain with spectral measure given by

P(E) f = χE · f, ∀ f ∈ L2(R, dx), ∀E ∈ B.
whereB is the class of Borel sets in the real line. The spectral measure ofQ is
given by

(R, B, L2(R, dx), P)

For, any f ∈ L2(R, dx) which is a.e. different from zero almost elsewhere with
respect to the Lebesgue measure onR is a generating vector. The direct integral
given by the von Neumann theorem

Hµ,N =
∫
R
Hx dµ(x)

is equal toL2(R, dx). Therefore,N(λ) = 1,Hx = C anddµ(x) = dx. The mea-
surable orthonormal basise(x) in our case are measurable functionse(x) : R 7→ C
such that

|e(x)| = 1

almost everywhere with respect to the Lebesgue measure. The unitary mappingV
is given by

V−1 : L2(R, dx)→ L2(R, dx)



P1: GXB

International Journal of Theoretical Physics [ijtp] PP994-ijtp-473598 November 12, 2003 0:20 Style file version May 30th, 2002

On the Mathematical Basis of the Dirac Formulation of Quantum Mechanics 2243

V h 7→
(∫

R
e∗(x)

√
dµ

dµg
(x)V h(x) d P(x)

)
g.

Thus,

(e(x), V h(x))x =
√

dµg

dµ
(x)

dµg,h

dµg
(x). (26)

The measures on (26) are given by

µg,h(E) = (g, P(E)h) =
∫

E
g∗(x)h(x) dx, ∀E ∈ B,

µg,g(E) = (g, P(E)g) =
∫

E
g∗(x)g(x) dx, ∀E ∈ B.

From these identities, we easily obtain the Radon–Nikodym derivatives of the
measuresµh,g andµg with respect to the Lebesgue measure onR. These Radon–
Nikodym derivatives are:

dµg,h

dx
(x) = g∗(x)h(x) and

dµg

dx
(x) = g∗(x)g(x). (27)

As the generating vectorg(x) is a.e. different from zero, we can divide the
first identity in (27) by the second to obtain

dµg,h

dµg
(x) = h(x)

g(x)
. (28)

If we replace (28) in (26), we conclude that the action of the measurable
orthonormal basis on eachHx is proportional to the action of the Dirac deltaδ(x):

(e(x), Fh(x))x =
√

dµg

dµ
(x)

h(x)

g(x)
, µ-a.e. (29)

In particular, ifµ = µg, we have

h(x)

g(x)
= 1

g(x)
δq(h),

almost elsewhere with respect toµ.

6.2. Minimal Riggings

We can define the following partial order in the class of the riggings of a
spectral measure:
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Definition 14. Let (8, τ8) and (9, τ9) be two riggings of the spectral measure
(3,A,H, P), we say that (8, τ8) is finer than (9, τ9) and we write (8, τ8) ≥
(9, τ9), if 8 ⊆ 9 and τ8 ≥ τ9 . In particular, if τ8 and τ9 are finer than the
topology induced byH in 8 and9, respectively, we have:

8 ⊆ 9 ⊆ H ⊆ 9× ⊆ 8×.
This is a partial ordering in the class of riggings of (3,A,H, P).

The next result shows the existence of minimal riggings.

Theorem 15. Let (3,A,H, P) be a spectral measure. Each direct integral of
the formHµ,N associated to (3,A,H, P), by the von Neumann theorem, along
with one of its measurable orthonormal basis{ek(λ)}N(λ)

k=1 , or equivalently, each
generating system{gk}mk=1 inH with respect to P such that

a. [ P] = [g1]P Â [g2]P Â · · ·,
b. if 1≤ j ≤ k ≤ m, thenµgj |3(gk) = µgk ,

provide a rigging(8, τ, µ, λkλ). This rigging is characterized by the following
properties:

(i) The subspace8 is dense inH and is given by

8 =
{
φ ∈ H : existe

dµφ,gk

dµgk

(λ) < ∞, ∀λ ∈ 3\30, ∀k ∈ [1, N(λ)〉
}

,

where30 is a subset of3 withµ zero measure (or equivalently, P zero
measure).

(ii) The complete family of antilinear functionals on8, fulfilling (21), is of
the form

{|λk×〉 : λ ∈ 3\30, k ∈ [1, N(λ)〉},
where we define each|λk×〉 in terms of the isomorphism V in Theorem 13:

〈φ|λk×〉 = (Vφ(λ), ek(λ))Hλ
=
√

dµgk

dµ
(λ)

dµφ,gk

dµgk

(λ), ∀φ ∈ 8. (30)

(iii) τ8 is the weak topologyσ (8,8×), i.e., the coarsest compatible with the
dual pair (8,8×). The topological dual8× is the vector space spanned
by the set|λk×.
The topologyτ8 is produced by the following family of seminorms:

φ 7→ |〈φ|λk×〉|, λ ∈ 3\30, k ∈ [1, N(λ)〉.
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Then, the rigging(8, τ, µ, λ×) is minimal. This means that no topology on8
coarser thanτ (except for the indeterminacy that produces the choice of the zero
µ measure set30) can rig the spectral measure (3,A,H, P).

The proof ofTheorem 15is based on the following idea: If we a priori
know the antilinear functionals|λk×〉 on8, these vectors define the seminorms
φ 7→ |〈φ|λk×〉|. Then|λk×〉 ∈ 8× if and only if the topology on8 makes these
seminorms continuous. In other words, the topology on8must be either equal to
τ or stronger in order that|λk×〉 ∈ 8×.

6.3. Explicit Form of the Eigenoperators

The following result permits the identification of the Foias operatorsI (λ) and
I ×(λ):

Theorem 16. Let (3,A,H, P), {gk}mk=1,Hµ,N , {ek(λ)}N(λ)
k=1 , V,8 and |λk×〉 be

as in Theorem 15. Then, the mappings:

I (λ) : 8→ Hλ

φ 7→
m∑

k=1

〈φ|λk×〉∗ek(λ)

=
m∑

k=1

(ek(λ), Vφ(λ))λek(λ)

=
m∑

k=1

√
dµgk

dµ
(λ)

dµgk,φ

dµgk

(λ)ek(λ) (31)

are well definedµ almost everywhere on3. The following relation holds:

(P(E)I φ, h) =
∫

E
(I (λ)φ, V h(λ))λdµ(λ), φ ∈ 8, h ∈ H, E ∈ A. (32)

In particular if E = 3,

(I φ, h) =
∫
3

(I (λ)φ, V h(λ))λdµ(λ), φ ∈ 8, h ∈ H. (33)

The adjoint operator I×(λ) is

I ×(λ) : Hλ → 8×

hλ 7→ I ×(λ)hλ : 8→ C

ϕ 7→ hλ(I (λ)ϕ),
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where

hλ(I (λ)ϕ) =
(

m∑
k=1

〈ϕ|λk×〉∗ek(λ), hλ

)
Hλ

=
(

m∑
k=1

ek(λ), Vϕ(λ))λek(λ), hλ

)
Hλ

=
(

m∑
k=1

√
dµgk

dµ
(λ)

dµgk,ϕ

dµgk

(λ)ek(λ), hλ

)
Hλ

.

In particular if hλ = ej (λ), then I×(λ)ej (λ) = |λ j×〉
I ×(λ) : Hλ → 8×

ej (λ) 7→ I ×(λ)ej (λ) : 8→ C
ϕ 7→ 〈ϕ|λ j×〉.

The eigenoperatorsγ (λ) = I ×(λ)I (λ) of the spectral measure are of the form

γ (λ) = I ×(λ)I (λ) : 8→ 8×

φ 7→ γ (λ)φ : 8→ C

ϕ 7→ [γ (λ)φ](ϕ)

where

[γ (λ)φ](ϕ) =
(

m∑
k=1

〈φ|λk×〉ek(λ),
m∑

k=1

〈ϕ|λk×〉ek(λ)

)
Hλ

=
m∑

k=1

〈φ|λk×〉∗〈ϕ|λk×〉.

The eigenforms of the spectral measureφ× = γ (λ)φ ∈ 8×, whereφ ∈ 8 are
given by:

φ× : 8→ C

ϕ 7→
m∑

k=1

〈φ|λk×〉∗〈ϕ|λk×〉,

In particular, if we chooseφ such that Iφ ∈ Hgj , then,

φ×(ϕ) = 〈φ|λ j×〉∗〈ϕ|λ j×〉, ∀ϕ ∈ 8.
Once we have identified the eigenoperators and the eigenforms, the topologies

on8 for which there exist an integral decomposition of the spectral measure can
be explicity determined:
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Theorem 17. With the hypothesis of Theorem 16, we have that:

i. A sufficient condition for the mappings I(λ) in (31) be continuous with
respect to a topologyτ defined on8 is that forλ ∈ 3 (save for a set with
zeroµ measure) the family of antilinear forms{|λk×〉 : k = 1, 2,. . .} be
equicontinuous with respect toτ .

ii. If m = µ-sup N(λ) = P-sup NP(λ) is finite, then the mappings I(λ) are
continuous for the minimal topologyτ8 as defined in Theorem 13.

The continuity of the eigenoperators and eigenforms can be derived from the
continuity of the mappingI (λ) and the following proposition:

Proposition 18. Under the conditions of Theorem 16, if we endow8 with a
locally convex topology for which I(λ) is continuous and letφ×β the antidual space
with the strong topologyβ(8×,8). Then,

i. The mapping I×(λ) : Hλ→ 8× is weakly and strongly continuous, i.e.,
it is (σ (H,H), σ (8×,8)) and‖ · ‖Hλ

, β(8×,8) continuous.
ii. The eigenoperatorγ (λ) = I ×(λ)I (λ) : 8→ 8× belongs toL(8,8×β ).

6.4. Kato-Kuroda Riggings

In the next result we establish the connections between the spectral repre-
sentations of Kato–Kuroda (theorem 9) and the concretion of Birman–Solomjak
(proposition 11).

Theorem 19. Let (3,A,H, P) be a spectral measure and let{gk}mk=1 be a gen-
erating system,Hµ,N a direct integral associated to P, {ej (λ)}mk=1 an orthonormal
measurable basis and the operator V: H→ Hµ,N as in section 3.2. (We suppose
thatµ is aσ -finite nonnegative scalar measure on (3,A) of the same type as [P].)

On the other hand, let us consider the spectral system(3,A, µ,H, P), a
spectral form (̂3,8, s) for it, the direct integralHµ,8, and an operator V′ : H→
Hµ,8 as in theorem 9.

Then, if{gk}mk=1 ⊂ 8, for eachh ∈ H andλ ∈ 3̂ we have

[V h](λ) = ⊕m
j=1

√
dµg1

dµ
(λ)

dµgj ,h

dµgj

(λ) ek(λ) (34)

and

[V ′h](λ) = ⊕m
j=1

dµgj ,h

dµgj

(λ) qλgj . (35)
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We note two consequences oftheorem 19:

(i) In the concretion of Kato–Kuroda (formula (35)) the normalization fac-
tors

√
dµg1
dµ (λ) don’t appear, or better, they are included inqλgj . This is

the relevant advantage of that construction.
(ii) Under the conditions of the theorem, The isomorphismsFV−1 and

VFV−1 between the direct integralsHµ,8 y Hµ,N relate the measur-
able families

{gλgj }λ∈3̂ y

{√
dµg1

dµ
(λ) ej (λ)

}
λ∈3̂

,

where j ∈ [1, m〉.
Now, we consider the eigenfunction expansions of Kato–Kuroda. We are

going to see that under the Birman–Solomjak conditions in section 3.2 it is possible
to obtain explicitly a complete system of eigenfunctions at the same time than the
eigenvectors of Marlow (1965) and the eigenoperators of Foias (1959a,b, 1962).

An orthonormal measurable basis{ej } of the direct integral

Hµ,N =
∫ ⊕
3

Hλ dµ

induces a unitary isomorphism between the spaces

Hµ,N ' L2(3∞, µ; l 2)⊕ [⊕∞1 L2(3m, µ;Cm)
]
,

where the sets3k are

3k = {λ ∈ 3 : N(λ) = k}, k ∈ [1,∞〉.
On the other hand, if we consider the discrete measured onN and [1,m〉, where
m ∈ N, we have the following unitary isomorphisms:

L2(3∞, µ; l 2) ' L2(3∞ × N, µ× d)

and

L2(3m, µ;Cm) ' L2(3m,×[1, m〉, µ× d).

Finally, in the union

(3∞ × N)
⋃[ ∞⋃

m=1

(3m × [1, m〉)
]

we define the measureν as the sum of the measuresµ× d that we consider above
in each of them.
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Theorem 20. Let the spectral system(3,A, µ,H, P), the spectral form
(3̂,8, s) for it, the generating system{gk}mk=1 for P, the direct integralHµ,N
the orthonormal measurable basis{ej (λ)}mk=1, and the operator V: H→ Hµ,N
be as in section 3.2. Let8be a minimal rigging (see section 6.2), where3̂ = 3\30

and{gk}mk=1 ⊂ 8. Then in the space

L2

(
(3̂∞ × N)

⋃[ ∞⋃
m=1

(3̂m × [1, m〉)
]

, ν

)
,

where3̂s = 3s
⋂
3̂ for all s ∈ {∞} ∪ N, we have a complete system of eigen-

functions of the form

[ψ×(λ× k)]φ = (ek(λ), Vφ(λ))λ

=
√

dµgk

dµ
(λ)

dµgk,φ

dµgk

(λ). (36)

(These identities are verified for everyφ ∈ 8 and every (λ, k) ∈ (3̂∞ ×
N)
⋃

[
⋃∞

m=1(3̂m × [1, m〉)]).
On the other hand, when8 = span{gj : j ∈ [1, m〉}, only the normalization

factors are relevant: In this case, eachφ ∈ 8 is of the form (finite sum)φ =∑
cj gj , where cj ∈ C, and then

[ψ×(λ× k)]φ = ck

√
dµgk

dµ
(λ), λ ∈ 3̂, k ∈ [1, m〉. (37)

We can use the approximate spectral forms as a tool to construct locally
convex riggings of a spectral measure. Under the conditions ofTheorem 20, we
know that the generalized eigenvectors of the spectral measureP are of the form

〈φ|λk×〉 =
√

dµgk

dµ
(λ)

dµφ,gk

dµgk

(λ),

for all φ ∈ 8, λ ∈ 3̂ andk ∈ [1, N(3)〉. In this case, we can write the spectral
form in the following terms

s(λ;φ, ϕ) =
m∑

k=1

〈φ|λk×〉〈λk×|ϕ〉,

for eachφ, ϕ ∈ 8 andλ ∈ 3̂. In particular, ifϕ = gk, then

s(λ;φ, gk) =
√

dµgk

dµ
(λ)〈φ|λk×〉.
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Now, if sε is an approximate spectral form for (3̂,8, s), we have

lim
ε→0

sε(λ;φ, gk) =
√

dµgk

dµ
(λ)〈φ|λk×〉. (38)

Finally, we consider on8 a topology of locally convex topological vector spaces
for which the approximate spectral formsε is equicontinuous with respect toε for
eachλ ∈ 3̂. Then the generalized eigenvectorsλk× belong to8×.

Definition 21. We say that a locally convex rigging (8, τ8) of a spectral measure
space (3,A,H, P) is aKato–Kuroda riggingif there is an approximate spectral
form sε equicontinuous with respect toε for eachλ ∈ 3\30. (Here30 is the set
considered in the definition of the rigging).

6.5. Inductive and Nuclear Versions of the Spectral Theorem

To finish our presentation, we give two new versions of both the nuclear and
the inductive spectral theorems. In these versions, this kind of spaces, nuclear
and inductive limit, appear as universal riggings of Vitali spectral measures, i.e.,
these spaces equip any Vitali spectral measure. This happens in particular for the
absolutely continuous part, with respect to the Lebesgue measure, and the discrete
part of every normal operator.

6.5.1. Vitali spectral measures

The spectral measure given by (3,A,H, P) is a Vitali spectral measure
if being given its continuous part (3,A,Hc, Pc), there exists a measureµ
on 3 with [µ] = [ P], such that the measure space (3,A, µ) admits a Vitali
system.

If (3,A,H, P) is a Vitali spectral measure, the Vitali Lebesgue theorem
guarantees that ifg, h ∈ Hc, for almost allλ ∈ 3 the Radon–Nikodym derivative
dµh,g

dµg
(λ) exists and is equal to limn→0

µh,g(En)
µg(En) for any sequence of setEn admitting

a contraction toλ.

Example. Every spectral measure defined on (Rn, B) without continuous singular
part with respect to the Lebesgue measure is a Vitali spectral measure.

6.5.2. The inductive version of the spectral theorem

The inductive limit (Hn, In)(n∈N) of a countable system whereHn are separa-
ble Hilbert spaces (whereHn ⊂ H) such that the identity mappingsIn : H 7→ H
are Hilbert–Schmidt is a universal rigging.
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Theorem 22. LetH be a separable Hilbert space and

(Hn, In)(n∈N)

an inductive system for which eachHn is a separable Hilbert space and the identity
mappings In : H 7→ H are Hilbert-Schmidt for all n∈ N. If

8 = span{
⋃

(n∈N)

R(In)}

is dense inH andτl is the inductive topology produced by the system(Hn, In)(n∈N)

on8, then,(8, τl ) rigs any Vitali spectral measure(3,A,H, P). In particular,
(8, τl ) rigs the absolutely continuous and discrete parts of any spectral measure
of the form(C, B,H, P).

6.5.3. Nuclear version of the spectral theorem

The original version of the Gelfand–Maurin nuclear spectral theorem
(Gelfand and Vilenkin, 1964; Maurin, 1968) assumed that8 is endowed with a
nuclear topology, the canonical injectionI : 8→ H is continuous, and therefore
nuclear, andA reduces8(A8 ⊂ 8) and is continuous on8.

The present version of the nuclear spectral theorem uses the relation between
the spectral measures and the direct integral of Hilbert spaces.

To begin with, let us write the following Lemma, due to Roberts (1966a,b):

Lemma. Let 8 be a locally convex topological vector space and letT be a
nuclear operatorT : 8 7→ H, whereH is a Hilbert space. Then, there exists a
separable Banach spaceX and two operatorsT1 : 8 7→ X andT2 : X 7→ H such
thatT1 is continuous,T2 is nuclear, andT = T2 ◦ T1.

Our version of the nuclear spectral theorem is the following:

Theorem 23. LetH be a Hilbert space,8 a dense subspace inH, and τ8 a
nuclear topology on8 such that the canonical injection I: 8 7→ H is continuous.
Then,(8, τ8) rigs any Vitali spectral measure(3,A,H, P). In particular,(8, τ8)
rigs the absolutely continuous and discrete parts of any spectral measure of the
form (C, B,H, P).

7. CONCLUDING REMARKS

As concluding remarks, we present two tables that summarize the present
work. They are labeled as Table I and Table II. In Table I, we summarize the state
of the art of the subject before the present research. On the other hand, Table II
shows how the new framework of locally convex equipments of spectral measures
as here introduced unifies the formalisms in Table I.
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Table I. Dirac Kets

On Hilbert spaces

“In the conventional von Neumann–Mackey formulation,
a quantum system is described in the language of Hilbert space. . .”

Projection-valued measuresP on
Hilbert spacesH.

Spectral measure spaces
(3,A,H, P).

→
Only with discrete spectrum.

EigenvectorsinH.
Classical spectral theorem.
Wave packets.

Direct integral decompositions of
Hilbert spaces
Hµ,N =

∫ ⊕
3
Hλdµ(λ).

→
Continuous and discrete spectrum.

EigenvectorsinHλ.
Functional spectral theorem.
Only if λ ∈ σp,Hλ ⊆ H and

Pλ : H→ Hλ is continuous.

On auxiliary topological vector spaces
. . .One would like to go beyond Hilbert space in order to be able to incorporate very singular
objects. But at the same time, one wants to keep the good geometrical structure of Hilbert space,
and the spectral theory as well, that fits so neatly with the interpretation of quantum mechanics.
The answer is to consider a structure built around a Hilbert space, in the spirit of distribution
theory.” Antoine [1998].

Gelfand triplets.
Rigged Hilbert spaces.
8 ⊂ H ⊂ 8×.
Integral decompositions of Foias.

→
Mainly when8 is a nuclear tvs.

Eigenoperatorsin L(8,8×β ).
Eigenformsin 8×.

Nuclear spectral theorem.

Eigenfunction expansions of
Kato–Kuroda on Auxiliary pairs
(8,8×).

→
Eigenfunctionsin 8×.
Spectral representations on Direct

integrals from8.

Other Formalisms→ (See Antoine
(1998).)

Scales of Hilbert or Banach spaces,
Lattices of Hilbert or Banach
spaces, Partial inner product
spaces.
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Table II. Locally Convex Equipments

A Unified Formalism

Spectral Measure Spaces
(3,A,H, P).

Direct integral decompositions of
Hilbert spaces
Hµ,N =

∫ ⊕
3
Hλ dµ(λ).

↔
Minimal equipments

• Tight riggings: They adjust their
structure to a concrete spectral
measure or direct integral.
• The topology of8 is σ (8,8×)

and8× is generated by the
eigenvectors.
• Identification of eigenvectors.

Gelfand triplets.
Rigged Hilbert spaces.
8 ⊂ H ⊂ 8×.
Integral Decompositions of Foias.

↔
Universal equipments

• These riggings equip every
Vitali spectral measure.
• New versions of the nuclear

and inductive spectral
theorem.
• Identification of the

eigenoperators and the
eigenforms.

Eigenfuction expansions of
Kato–Kuroda on Auxiliary
pairs (8,8×).

↔
Equipments of Kato–Kuroda

• Stationary methods and
approximate spectral forms.
• Identification of

eigenfunctions.
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